On the Baillie PSW-conjecture

Sh. T. Ishmukhametov, B. Mubarakov, R. Rubtsova, E. V. Oleynikova
{"title":"On the Baillie PSW-conjecture","authors":"Sh. T. Ishmukhametov, B. Mubarakov, R. Rubtsova, E. V. Oleynikova","doi":"10.26907/0021-3446-2024-4-80-88","DOIUrl":null,"url":null,"abstract":"The Baillie PSW hypothesis was formulated in 1980 and was named after the authors R. Baillie, C. Pomerance, J. Selfridge and S. Wagstaff. The hypothesis is related to the problem of the existence of odd numbers n \\equiv \\pm 2 (mod 5), which are both Fermat and Lucas-pseudoprimes (in short, FL-pseudoprimes). A Fermat pseudoprime to base a is a composite number n satisfying the condition an - 1 \\equiv 1 (mod n). Base a is chosen to be equal to 2. A Lucas pseudoprime is a composite n satisfying Fn - e(n) \\equiv 0 (mod n), where n(e) is the Legendre symbol e(n) = \\bigl( n 5 \\bigr) , Fm the mth term of the Fibonacci series. According to Baillie’s PSW conjecture, there are no FL-pseudoprimes. If the hypothesis is true, the combined primality test checking Fermat and Lucas conditions for odd numbers not divisible by 5 gives the correct answer for all numbers of the form n \\equiv \\pm 2 (mod 5), which generates a new deterministic polynomial primality test detecting the primality of 60 percent of all odd numbers in just two checks. In this work, we continue the study of FL-pseudoprimes, started in our article \"On a combined primality test\" published in the journal \"Izvestia VUZov.Matematika\" No. 12 in 2022. We have established new restrictions on probable FL-pseudoprimes and described new algorithms for checking FL-primality, and with the help of them we proved the absence of such numbers up to the boundary B = 1021, which is more than 30 times larger than the previously known boundary 264 found by J. Gilchrist in 2013. An inaccuracy in the formulation of theorem 4 in the mentioned article has also been corrected.","PeriodicalId":507800,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika","volume":"33 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26907/0021-3446-2024-4-80-88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Baillie PSW hypothesis was formulated in 1980 and was named after the authors R. Baillie, C. Pomerance, J. Selfridge and S. Wagstaff. The hypothesis is related to the problem of the existence of odd numbers n \equiv \pm 2 (mod 5), which are both Fermat and Lucas-pseudoprimes (in short, FL-pseudoprimes). A Fermat pseudoprime to base a is a composite number n satisfying the condition an - 1 \equiv 1 (mod n). Base a is chosen to be equal to 2. A Lucas pseudoprime is a composite n satisfying Fn - e(n) \equiv 0 (mod n), where n(e) is the Legendre symbol e(n) = \bigl( n 5 \bigr) , Fm the mth term of the Fibonacci series. According to Baillie’s PSW conjecture, there are no FL-pseudoprimes. If the hypothesis is true, the combined primality test checking Fermat and Lucas conditions for odd numbers not divisible by 5 gives the correct answer for all numbers of the form n \equiv \pm 2 (mod 5), which generates a new deterministic polynomial primality test detecting the primality of 60 percent of all odd numbers in just two checks. In this work, we continue the study of FL-pseudoprimes, started in our article "On a combined primality test" published in the journal "Izvestia VUZov.Matematika" No. 12 in 2022. We have established new restrictions on probable FL-pseudoprimes and described new algorithms for checking FL-primality, and with the help of them we proved the absence of such numbers up to the boundary B = 1021, which is more than 30 times larger than the previously known boundary 264 found by J. Gilchrist in 2013. An inaccuracy in the formulation of theorem 4 in the mentioned article has also been corrected.
关于贝利 PSW 猜想
Baillie PSW 假设提出于 1980 年,以作者 R. Baillie、C. Pomerance、J. Selfridge 和 S. Wagstaff 的名字命名。该假说与存在奇数 n \equiv \pm 2 (mod 5) 的问题有关,这些奇数既是费马假素数,又是卢卡斯假素数(简称 FL 假素数)。以 a 为底数的费马假素数是满足 an - 1 \equiv 1 (mod n) 条件的合数 n。卢卡斯伪素数是满足 Fn - e(n) \equiv 0 (mod n) 条件的合数 n,其中 n(e) 是勒让德符号 e(n) = \bigl( n 5 \bigr) ,Fm 是斐波那契数列的第 m 项。根据贝利的 PSW 猜想,不存在 FL 伪素数。如果假设成立,那么对不能被 5 整除的奇数进行费马条件和卢卡斯条件的联合原始性检验,就能对所有 n \equiv \pm 2 (mod 5) 形式的数给出正确答案,这就产生了一种新的确定性多项式原始性检验,只需两次检验就能检测出 60% 的奇数的原始性。在这项工作中,我们将继续研究 FL 伪素数,我们的文章《论组合式初等性检验》于 2022 年发表在《Izvestia VUZov.Matematika》杂志第 12 期上。我们建立了对可能的 FL 伪素数的新限制,并描述了检查 FL 原始性的新算法,在这些算法的帮助下,我们证明了在 B = 1021 边界以内不存在这样的数,这比 J. Gilchrist 在 2013 年发现的已知边界 264 大 30 多倍。我们还纠正了上述文章中定理 4 表述的不准确之处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信