Exploring the optimal design space of transparent perovskite solar cells for four-terminal tandem applications through Pareto front optimization

Hu Quee Tan, Xinhai Zhao, Akhil Ambardekar, Erik Birgersson, Hansong Xue
{"title":"Exploring the optimal design space of transparent perovskite solar cells for four-terminal tandem applications through Pareto front optimization","authors":"Hu Quee Tan, Xinhai Zhao, Akhil Ambardekar, Erik Birgersson, Hansong Xue","doi":"10.1063/5.0187208","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms can enhance the design and experimental processing of solar cells, resulting in increased conversion efficiency. In this study, we introduce a novel machine learning-based methodology for optimizing the Pareto front of four-terminal (4T) perovskite-copper indium selenide (CIS) tandem solar cells (TSCs). By training a neural network using the Bayesian regularization-backpropagation algorithm via Hammersley sampling, we achieve high prediction accuracy when testing with unseen data through random sampling. This surrogate model not only reduces computational costs but also potentially enhances device performance, increasing from 29.4% to 30.4% while simultaneously reducing material costs for fabrication by 50%. Comparing experimentally fabricated cells with the predicted optimal cells, the latter show a thinner front contact electrode, charge-carrier transport layer, and back contact electrode. Highly efficient perovskite cells identified from the Pareto front have a perovskite layer thickness ranging from 420 to 580 nm. Further analysis reveals the front contact electrode needs to be thin, while the back contact electrode can have a thickness ranging from 100 to 145 nm and still achieve high efficiency. The charge-carrier transport layers play a crucial role in minimizing interface recombination and ensuring unidirectional current flow. The optimal design space suggests thinner electron and hole transport layer thicknesses of 7 nm, down from 23 to 10 nm, respectively. It indicates a balanced charge-carrier extraction is crucial for an optimized perovskite cell. Overall, the presented methodology and optimized design parameters have the potential to enhance the performance of 4T perovskite/CIS TSC while reducing material fabrication costs.","PeriodicalId":502250,"journal":{"name":"APL Machine Learning","volume":"100 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0187208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning algorithms can enhance the design and experimental processing of solar cells, resulting in increased conversion efficiency. In this study, we introduce a novel machine learning-based methodology for optimizing the Pareto front of four-terminal (4T) perovskite-copper indium selenide (CIS) tandem solar cells (TSCs). By training a neural network using the Bayesian regularization-backpropagation algorithm via Hammersley sampling, we achieve high prediction accuracy when testing with unseen data through random sampling. This surrogate model not only reduces computational costs but also potentially enhances device performance, increasing from 29.4% to 30.4% while simultaneously reducing material costs for fabrication by 50%. Comparing experimentally fabricated cells with the predicted optimal cells, the latter show a thinner front contact electrode, charge-carrier transport layer, and back contact electrode. Highly efficient perovskite cells identified from the Pareto front have a perovskite layer thickness ranging from 420 to 580 nm. Further analysis reveals the front contact electrode needs to be thin, while the back contact electrode can have a thickness ranging from 100 to 145 nm and still achieve high efficiency. The charge-carrier transport layers play a crucial role in minimizing interface recombination and ensuring unidirectional current flow. The optimal design space suggests thinner electron and hole transport layer thicknesses of 7 nm, down from 23 to 10 nm, respectively. It indicates a balanced charge-carrier extraction is crucial for an optimized perovskite cell. Overall, the presented methodology and optimized design parameters have the potential to enhance the performance of 4T perovskite/CIS TSC while reducing material fabrication costs.
通过帕累托前沿优化探索四端串联应用透明过氧化物太阳能电池的最佳设计空间
机器学习算法可以提高太阳能电池的设计和实验处理能力,从而提高转换效率。在本研究中,我们介绍了一种基于机器学习的新方法,用于优化四端子(4T)包晶铜铟硒(CIS)串联太阳能电池(TSCs)的帕累托前沿。通过哈默斯利采样,我们使用贝叶斯正则化-反向传播算法训练了一个神经网络,在通过随机抽样使用未见数据进行测试时,我们实现了很高的预测准确率。这种代理模型不仅降低了计算成本,还可能提高器件性能,使器件性能从 29.4% 提高到 30.4%,同时将制造材料成本降低 50%。实验制作的电池与预测的最佳电池相比,后者的前接触电极、电荷载流子传输层和背接触电极更薄。从帕累托前沿确定的高效包晶电池的包晶层厚度在 420 纳米到 580 纳米之间。进一步分析表明,前接触电极需要很薄,而背接触电极的厚度可在 100 至 145 纳米之间,但仍能实现高效率。电荷载流子传输层在最大限度地减少界面重组和确保单向电流流动方面起着至关重要的作用。最佳设计空间建议将电子和空穴传输层的厚度分别从 23 纳米减至 10 纳米,即减薄 7 纳米。这表明平衡的电荷载流子提取对于优化的过氧化物电池至关重要。总之,所介绍的方法和优化的设计参数有望提高 4T 包晶石/CIS TSC 的性能,同时降低材料制造成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信