Hyperholomorphicity by Proposing the Corresponding Cauchy–Riemann Equation in the Extended Quaternion Field

Axioms Pub Date : 2024-04-25 DOI:10.3390/axioms13050291
Ji-Eun Kim
{"title":"Hyperholomorphicity by Proposing the Corresponding Cauchy–Riemann Equation in the Extended Quaternion Field","authors":"Ji-Eun Kim","doi":"10.3390/axioms13050291","DOIUrl":null,"url":null,"abstract":"In algebra, the sedenions, an extension of the octonion system, form a 16-dimensional noncommutative and nonassociative algebra over the real numbers. It can be expressed as two octonions, and a function and differential operator can be defined to treat the sedenion, expressed as two octonions, as a variable. By configuring elements using the structure of complex numbers, the characteristics of octonions, the stage before expansion, can be utilized. The basis of a sedenion can be simplified and used for calculations. We propose a corresponding Cauchy–Riemann equation by defining a regular function for two octonions with a complex structure. Based on this, the integration theorem of regular functions with a sedenion of the complex structure is given. The relationship between regular functions and holomorphy is presented, presenting the basis of function theory for a sedenion of the complex structure.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"23 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13050291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In algebra, the sedenions, an extension of the octonion system, form a 16-dimensional noncommutative and nonassociative algebra over the real numbers. It can be expressed as two octonions, and a function and differential operator can be defined to treat the sedenion, expressed as two octonions, as a variable. By configuring elements using the structure of complex numbers, the characteristics of octonions, the stage before expansion, can be utilized. The basis of a sedenion can be simplified and used for calculations. We propose a corresponding Cauchy–Riemann equation by defining a regular function for two octonions with a complex structure. Based on this, the integration theorem of regular functions with a sedenion of the complex structure is given. The relationship between regular functions and holomorphy is presented, presenting the basis of function theory for a sedenion of the complex structure.
通过在扩展四元数场中提出相应的考奇-黎曼方程来实现超全同性
在代数学中,沉子是八元数系的延伸,它构成了实数上的 16 维非交换和非联立代数。它可以表示为两个八元数,并且可以定义函数和微分算子,将表示为两个八元数的 sedenion 视为变量。通过使用复数结构配置元素,可以利用八元数的特性,即扩展前的阶段。沉子的基础可以简化并用于计算。我们通过为两个具有复数结构的八元数定义正则函数,提出了相应的考奇-黎曼方程。在此基础上,给出了正则函数与复数结构的 sedenion 的积分定理。提出了正则函数与全形之间的关系,为复数结构的沉降子提出了函数理论的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信