{"title":"Dynamics of entangled Greenberger — Horne — Zeilinger states in three qubits thermal Tavis — Cummings model","authors":"A. R. Bagrov, E. K. Bashkirov","doi":"10.18287/2541-7525-2024-30-1-82-95","DOIUrl":null,"url":null,"abstract":"In this paper, we investigated the dynamics of systems of two and three identical qubits interacting resonantly with a selected mode of a thermal field of a lossless resonator. We found solutions of the quantum time-dependent Liouville equation for various three- and two-qubit entangled states of qubits. Based on these solutions, we calculated the criterion of the qubit entanglement — fidelity. The results of numerical calculations of the fidelity showed that increasing the average number of photons in a mode leads to a decrease in the maximum degree of entanglement. It is shown that the two-qubit entangled state is more stable with respect to external noise than the three-qubit entangled Greenberger — Horne — Zeilinger states (GHZ). Moreover, a genuine entangled GHZ-state is more stable to noise than a GHZ-like entangled state.","PeriodicalId":427884,"journal":{"name":"Vestnik of Samara University. Natural Science Series","volume":"9 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik of Samara University. Natural Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2541-7525-2024-30-1-82-95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigated the dynamics of systems of two and three identical qubits interacting resonantly with a selected mode of a thermal field of a lossless resonator. We found solutions of the quantum time-dependent Liouville equation for various three- and two-qubit entangled states of qubits. Based on these solutions, we calculated the criterion of the qubit entanglement — fidelity. The results of numerical calculations of the fidelity showed that increasing the average number of photons in a mode leads to a decrease in the maximum degree of entanglement. It is shown that the two-qubit entangled state is more stable with respect to external noise than the three-qubit entangled Greenberger — Horne — Zeilinger states (GHZ). Moreover, a genuine entangled GHZ-state is more stable to noise than a GHZ-like entangled state.