Recurrence and transience of a Markov chain on + and evaluation of prior distributions for a Poisson mean

IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY
J. Hobert, K. Khare
{"title":"Recurrence and transience of a Markov chain on + and evaluation of prior distributions for a Poisson mean","authors":"J. Hobert, K. Khare","doi":"10.1017/jpr.2024.13","DOIUrl":null,"url":null,"abstract":"\n Eaton (1992) considered a general parametric statistical model paired with an improper prior distribution for the parameter and proved that if a certain Markov chain, constructed using the model and the prior, is recurrent, then the improper prior is strongly admissible, which (roughly speaking) means that the generalized Bayes estimators derived from the corresponding posterior distribution are admissible. Hobert and Robert (1999) proved that Eaton’s Markov chain is recurrent if and only if its so-called conjugate Markov chain is recurrent. The focus of this paper is a family of Markov chains that contains all of the conjugate chains that arise in the context of a Poisson model paired with an arbitrary improper prior for the mean parameter. Sufficient conditions for recurrence and transience are developed and these are used to establish new results concerning the strong admissibility of non-conjugate improper priors for the Poisson mean.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2024.13","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Eaton (1992) considered a general parametric statistical model paired with an improper prior distribution for the parameter and proved that if a certain Markov chain, constructed using the model and the prior, is recurrent, then the improper prior is strongly admissible, which (roughly speaking) means that the generalized Bayes estimators derived from the corresponding posterior distribution are admissible. Hobert and Robert (1999) proved that Eaton’s Markov chain is recurrent if and only if its so-called conjugate Markov chain is recurrent. The focus of this paper is a family of Markov chains that contains all of the conjugate chains that arise in the context of a Poisson model paired with an arbitrary improper prior for the mean parameter. Sufficient conditions for recurrence and transience are developed and these are used to establish new results concerning the strong admissibility of non-conjugate improper priors for the Poisson mean.
+上马尔可夫链的递归和瞬变以及泊松均值先验分布的评估
伊顿(1992 年)考虑了一般参数统计模型与参数的不恰当先验分布的配对,并证明了如果使用模型和先验构建的马尔可夫链是递归的,那么不恰当先验就是强可接受性的,这(粗略地说)意味着从相应的后验分布导出的广义贝叶斯估计器是可接受性的。Hobert 和 Robert(1999 年)证明,当且仅当其所谓的共轭马尔可夫链是递归的时候,伊顿马尔可夫链才是递归的。本文的重点是一个马尔可夫链族,它包含了泊松模型与任意不恰当的均值参数先验配对情况下出现的所有共轭链。本文提出了递归和瞬变的充分条件,并利用这些条件建立了关于泊松均值的非共轭不恰当先验的强可接受性的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Probability
Journal of Applied Probability 数学-统计学与概率论
CiteScore
1.50
自引率
10.00%
发文量
92
审稿时长
6-12 weeks
期刊介绍: Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used. A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信