David Glynn, John Giardina, Julia Hatamyar, Ankur Pandya, Marta Soares, Noemi Kreif
{"title":"Integrating decision modeling and machine learning to inform treatment stratification","authors":"David Glynn, John Giardina, Julia Hatamyar, Ankur Pandya, Marta Soares, Noemi Kreif","doi":"10.1002/hec.4834","DOIUrl":null,"url":null,"abstract":"<p>There is increasing interest in moving away from “one size fits all (OSFA)” approaches toward stratifying treatment decisions. Understanding how expected effectiveness and cost-effectiveness varies with patient covariates is a key aspect of stratified decision making. Recently proposed machine learning (ML) methods can learn heterogeneity in outcomes without pre-specifying subgroups or functional forms, enabling the construction of decision rules (‘policies’) that map individual covariates into a treatment decision. However, these methods do not yet integrate ML estimates into a decision modeling framework in order to reflect long-term policy-relevant outcomes and synthesize information from multiple sources. In this paper, we propose a method to integrate ML and decision modeling, when individual patient data is available to estimate treatment-specific survival time. We also propose a novel implementation of policy tree algorithms to define subgroups using decision model output. We demonstrate these methods using the SPRINT (Systolic Blood Pressure Intervention Trial), comparing outcomes for “standard” and “intensive” blood pressure targets. We find that including ML into a decision model can impact the estimate of incremental net health benefit (INHB) for OSFA policies. We also find evidence that stratifying treatment using subgroups defined by a tree-based algorithm can increase the estimates of the INHB.</p>","PeriodicalId":12847,"journal":{"name":"Health economics","volume":"33 8","pages":"1772-1792"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hec.4834","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health economics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hec.4834","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
There is increasing interest in moving away from “one size fits all (OSFA)” approaches toward stratifying treatment decisions. Understanding how expected effectiveness and cost-effectiveness varies with patient covariates is a key aspect of stratified decision making. Recently proposed machine learning (ML) methods can learn heterogeneity in outcomes without pre-specifying subgroups or functional forms, enabling the construction of decision rules (‘policies’) that map individual covariates into a treatment decision. However, these methods do not yet integrate ML estimates into a decision modeling framework in order to reflect long-term policy-relevant outcomes and synthesize information from multiple sources. In this paper, we propose a method to integrate ML and decision modeling, when individual patient data is available to estimate treatment-specific survival time. We also propose a novel implementation of policy tree algorithms to define subgroups using decision model output. We demonstrate these methods using the SPRINT (Systolic Blood Pressure Intervention Trial), comparing outcomes for “standard” and “intensive” blood pressure targets. We find that including ML into a decision model can impact the estimate of incremental net health benefit (INHB) for OSFA policies. We also find evidence that stratifying treatment using subgroups defined by a tree-based algorithm can increase the estimates of the INHB.
期刊介绍:
This Journal publishes articles on all aspects of health economics: theoretical contributions, empirical studies and analyses of health policy from the economic perspective. Its scope includes the determinants of health and its definition and valuation, as well as the demand for and supply of health care; planning and market mechanisms; micro-economic evaluation of individual procedures and treatments; and evaluation of the performance of health care systems.
Contributions should typically be original and innovative. As a rule, the Journal does not include routine applications of cost-effectiveness analysis, discrete choice experiments and costing analyses.
Editorials are regular features, these should be concise and topical. Occasionally commissioned reviews are published and special issues bring together contributions on a single topic. Health Economics Letters facilitate rapid exchange of views on topical issues. Contributions related to problems in both developed and developing countries are welcome.