Synergistic combination of 2-D MXene and MoO3 nanoparticles for improved gas sensing at room temperature

Shravani Kale, Dhanashree Sable, Rajat Srivastava, Vaishali Phatak Londhe, S. Kale
{"title":"Synergistic combination of 2-D MXene and MoO3 nanoparticles for improved gas sensing at room temperature","authors":"Shravani Kale, Dhanashree Sable, Rajat Srivastava, Vaishali Phatak Londhe, S. Kale","doi":"10.1088/1361-6463/ad436b","DOIUrl":null,"url":null,"abstract":"\n MXene Ti3C2Tx (with 30% HF-etched, named Ti3C2Tx-30) plays a pivotal role in the substantial enhancement of the structural modification of molybdenum trioxide (MoO3). Additionally, as the surface MoO3 molecules come in contact with reducing gas moieties, they actively participate in gas sensing at room temperature. The percentage of Ti3C2Tx-30 in the MoO3 matrix was varied as 10%, 20%, and 40%, denoted as MM-10, MM-20, and MM-40, respectively. Structural analysis confirmed the composition of the basic elements, and evolution of TiO2 at higher percentage of Ti3C2Tx-30. Spectroscopy analysis shows the interactions between Ti3C2Tx-30 and MoO3, showcasing work functions of 6.91 eV, 6.75 eV, and 7.21 eV for MM-10, MM-20, and MM-40, respectively, confirming the MM-20 to be an optimum composition. When the samples were exposed to ammonia gas, MM-20 showed high response (93% for 100 ppm) at room temperature, with the response time ~ 10 s. As compared to bare MoO3 these samples showed ten-fold improvement. The excess electrons on the surface of Ti3C2Tx-30 facilitate the formation of O2- species, which also provides stability to the, otherwise-highly-reactive, MXene surface. These species actively react with ammonia molecules in the presence of adsorbed MoO3, thereby changing the resistance of the system. This can be a significant step towards imparting high gas sensitivity to metal oxides at room temperature via incorporation of optimum percentage of optimised Ti3C2Tx.","PeriodicalId":507822,"journal":{"name":"Journal of Physics D: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad436b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

MXene Ti3C2Tx (with 30% HF-etched, named Ti3C2Tx-30) plays a pivotal role in the substantial enhancement of the structural modification of molybdenum trioxide (MoO3). Additionally, as the surface MoO3 molecules come in contact with reducing gas moieties, they actively participate in gas sensing at room temperature. The percentage of Ti3C2Tx-30 in the MoO3 matrix was varied as 10%, 20%, and 40%, denoted as MM-10, MM-20, and MM-40, respectively. Structural analysis confirmed the composition of the basic elements, and evolution of TiO2 at higher percentage of Ti3C2Tx-30. Spectroscopy analysis shows the interactions between Ti3C2Tx-30 and MoO3, showcasing work functions of 6.91 eV, 6.75 eV, and 7.21 eV for MM-10, MM-20, and MM-40, respectively, confirming the MM-20 to be an optimum composition. When the samples were exposed to ammonia gas, MM-20 showed high response (93% for 100 ppm) at room temperature, with the response time ~ 10 s. As compared to bare MoO3 these samples showed ten-fold improvement. The excess electrons on the surface of Ti3C2Tx-30 facilitate the formation of O2- species, which also provides stability to the, otherwise-highly-reactive, MXene surface. These species actively react with ammonia molecules in the presence of adsorbed MoO3, thereby changing the resistance of the system. This can be a significant step towards imparting high gas sensitivity to metal oxides at room temperature via incorporation of optimum percentage of optimised Ti3C2Tx.
二维 MXene 和 MoO3 纳米粒子的协同组合可在室温下提高气体传感能力
MXene Ti3C2Tx(经 30% 高频蚀刻,命名为 Ti3C2Tx-30)在大幅提高三氧化钼(MoO3)的结构改性方面发挥了关键作用。此外,由于表面 MoO3 分子与还原气体分子接触,它们在室温下积极参与气体传感。Ti3C2Tx-30 在 MoO3 基体中的比例分别为 10%、20% 和 40%,分别称为 MM-10、MM-20 和 MM-40。结构分析证实了基本元素的组成,以及在 Ti3C2Tx-30 的比例较高时 TiO2 的演变。光谱分析显示了 Ti3C2Tx-30 和 MoO3 之间的相互作用,MM-10、MM-20 和 MM-40 的功函数分别为 6.91 eV、6.75 eV 和 7.21 eV,这证实 MM-20 是最佳成分。当样品暴露在氨气中时,MM-20 在室温下显示出较高的响应(100 ppm 时为 93%),响应时间约为 10 秒。Ti3C2Tx-30 表面上的过剩电子促进了 O2- 物种的形成,这也为原本高反应性的 MXene 表面提供了稳定性。在吸附了 MoO3 的情况下,这些物质会积极与氨分子发生反应,从而改变系统的电阻。通过加入最佳比例的优化 Ti3C2Tx,在室温下赋予金属氧化物高气体灵敏度方面迈出了重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信