V. Banda, Rimuka Dzwairo, Sudhir Kumar Singh, T. Kanyerere
{"title":"Quantifying the influence of climate change on streamflow of Rietspruit sub-basin, South Africa","authors":"V. Banda, Rimuka Dzwairo, Sudhir Kumar Singh, T. Kanyerere","doi":"10.2166/wcc.2024.690","DOIUrl":null,"url":null,"abstract":"\n \n This study integrated climate projections from five global climate models (GCMs) into the soil and water assessment tool to evaluate the potential impact of climate alterations on the Rietspruit River sub-basin under two representative concentration pathways (RCP4.5 and 8.5). The model's performance was evaluated based on the coefficient of determination (R2), percent bias (PBIAS), Nash–Sutcliffe efficiency (NSE), probability (P)-factor and correlation coefficient (R)-factor. Calibration results showed an R2 of 0.62, NSE of 0.60, PBIAS of 20, P-factor of 0.86 and R-factor of 0.91, while validation produced an R2 of 0.64, NSE of 0.61, PBIAS of 40 and P-factor of 0.85 and R-factor of 1.22. Precipitation is predicted to increase under both RCPs. Maximum temperature is projected to increase under both RCPs, with a major increase in the winter months. Minimum temperatures are projected to decrease under RCP4.5 in the near (−0.99 °C) and mid (−0.23 °C) futures, while the far future is projected to experience an increase of 0.14 °C. Precipitation and temperature changes correspond to increases in streamflow by an average of 53% (RCP4.5) and 47% (RCP8.5). These results indicate a need for an integrated approach in catchment water resource management amid potential climate and land use variations.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wcc.2024.690","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study integrated climate projections from five global climate models (GCMs) into the soil and water assessment tool to evaluate the potential impact of climate alterations on the Rietspruit River sub-basin under two representative concentration pathways (RCP4.5 and 8.5). The model's performance was evaluated based on the coefficient of determination (R2), percent bias (PBIAS), Nash–Sutcliffe efficiency (NSE), probability (P)-factor and correlation coefficient (R)-factor. Calibration results showed an R2 of 0.62, NSE of 0.60, PBIAS of 20, P-factor of 0.86 and R-factor of 0.91, while validation produced an R2 of 0.64, NSE of 0.61, PBIAS of 40 and P-factor of 0.85 and R-factor of 1.22. Precipitation is predicted to increase under both RCPs. Maximum temperature is projected to increase under both RCPs, with a major increase in the winter months. Minimum temperatures are projected to decrease under RCP4.5 in the near (−0.99 °C) and mid (−0.23 °C) futures, while the far future is projected to experience an increase of 0.14 °C. Precipitation and temperature changes correspond to increases in streamflow by an average of 53% (RCP4.5) and 47% (RCP8.5). These results indicate a need for an integrated approach in catchment water resource management amid potential climate and land use variations.
期刊介绍:
Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.