Siyao Shuang , Yanan Hu , Xiaotao Li , Fuping Yuan , Guozheng Kang , Huajian Gao , Xu Zhang
{"title":"Tuning chemical short-range order for simultaneous strength and toughness enhancement in NiCoCr medium-entropy alloys","authors":"Siyao Shuang , Yanan Hu , Xiaotao Li , Fuping Yuan , Guozheng Kang , Huajian Gao , Xu Zhang","doi":"10.1016/j.ijplas.2024.103980","DOIUrl":null,"url":null,"abstract":"<div><p>The pursuit of enhancing strength and toughness remains a critical endeavor in the field of structural materials. This study explores two distinct strategies to overcome the traditional strength-toughness trade-off. Specifically, we manipulate the chemical composition and short-range order (SRO) of the NiCoCr medium-entropy alloy, which has shown remarkable fracture toughness in recent experiments. Utilizing molecular dynamics simulations, we uncover nano-scale deformation mechanisms during crack propagation. Our findings highlight that optimizing the SRO degree leads to improvements in both atomic scale strength and toughness defined as the area underneath stress-strain curves from MD simulations. In contrast, a trade-off between strength and toughness persists when only manipulating the Ni content in the NiCoCr alloy. Based on the simulation results, we establish a strong correlation between toughness, strength, surface energies, and unstable stacking fault energies. These factors are influenced by the chemical composition and SROs in NiCoCr, with SROs acting as strong obstacles to dislocations, thereby contributing to additional strength. The exceptional toughness of NiCoCr with SRO arises from a synergy of intrinsic and extrinsic mechanisms, including dislocation glide, nanobridging during nanovoid coalescence and zigzag crack path. It is found that, in the presence of SRO, intrinsic toughening mechanisms usually associated with crack tip blunting and dissipation can also facilitate the onset of extrinsic toughening mechanisms of nanobridging and zig-zag crack path associated with nanovoid formation and coalescence. This study emphasizes the importance of tailoring SRO in designing materials with enhanced strength and toughness.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"177 ","pages":"Article 103980"},"PeriodicalIF":12.8000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924001074","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The pursuit of enhancing strength and toughness remains a critical endeavor in the field of structural materials. This study explores two distinct strategies to overcome the traditional strength-toughness trade-off. Specifically, we manipulate the chemical composition and short-range order (SRO) of the NiCoCr medium-entropy alloy, which has shown remarkable fracture toughness in recent experiments. Utilizing molecular dynamics simulations, we uncover nano-scale deformation mechanisms during crack propagation. Our findings highlight that optimizing the SRO degree leads to improvements in both atomic scale strength and toughness defined as the area underneath stress-strain curves from MD simulations. In contrast, a trade-off between strength and toughness persists when only manipulating the Ni content in the NiCoCr alloy. Based on the simulation results, we establish a strong correlation between toughness, strength, surface energies, and unstable stacking fault energies. These factors are influenced by the chemical composition and SROs in NiCoCr, with SROs acting as strong obstacles to dislocations, thereby contributing to additional strength. The exceptional toughness of NiCoCr with SRO arises from a synergy of intrinsic and extrinsic mechanisms, including dislocation glide, nanobridging during nanovoid coalescence and zigzag crack path. It is found that, in the presence of SRO, intrinsic toughening mechanisms usually associated with crack tip blunting and dissipation can also facilitate the onset of extrinsic toughening mechanisms of nanobridging and zig-zag crack path associated with nanovoid formation and coalescence. This study emphasizes the importance of tailoring SRO in designing materials with enhanced strength and toughness.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.