Shuming Zhang , Zhidong Guan , Hao Jiang , Xiaodong Wang , Pingan Tan
{"title":"BrepMFR: Enhancing machining feature recognition in B-rep models through deep learning and domain adaptation","authors":"Shuming Zhang , Zhidong Guan , Hao Jiang , Xiaodong Wang , Pingan Tan","doi":"10.1016/j.cagd.2024.102318","DOIUrl":null,"url":null,"abstract":"<div><p>Feature Recognition (FR) plays a crucial role in modern digital manufacturing, serving as a key technology for integrating Computer-Aided Design (CAD), Computer-Aided Process Planning (CAPP) and Computer-Aided Manufacturing (CAM) systems. The emergence of deep learning methods in recent years offers a new approach to address challenges in recognizing highly intersecting features with complex geometric shapes. However, due to the high cost of labeling real CAD models, neural networks are usually trained on computer-synthesized datasets, resulting in noticeable performance degradation when applied to real-world CAD models. Therefore, we propose a novel deep learning network, BrepMFR, designed for Machining Feature Recognition (MFR) from Boundary Representation (B-rep) models. We transform the original B-rep model into a graph representation as network-friendly input, incorporating local geometric shape and global topological relationships. Leveraging a graph neural network based on Transformer architecture and graph attention mechanism, we extract the feature representation of high-level semantic information to achieve machining feature recognition. Additionally, employing a two-step training strategy under a transfer learning framework, we enhance BrepMFR's generalization ability by adapting synthetic training data to real CAD data. Furthermore, we establish a large-scale synthetic CAD model dataset inclusive of 24 typical machining features, showcasing diversity in geometry that closely mirrors real-world mechanical engineering scenarios. Extensive experiments across various datasets demonstrate that BrepMFR achieves state-of-the-art machining feature recognition accuracy and performs effectively on CAD models of real-world mechanical parts.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"111 ","pages":"Article 102318"},"PeriodicalIF":1.3000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624000529","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Feature Recognition (FR) plays a crucial role in modern digital manufacturing, serving as a key technology for integrating Computer-Aided Design (CAD), Computer-Aided Process Planning (CAPP) and Computer-Aided Manufacturing (CAM) systems. The emergence of deep learning methods in recent years offers a new approach to address challenges in recognizing highly intersecting features with complex geometric shapes. However, due to the high cost of labeling real CAD models, neural networks are usually trained on computer-synthesized datasets, resulting in noticeable performance degradation when applied to real-world CAD models. Therefore, we propose a novel deep learning network, BrepMFR, designed for Machining Feature Recognition (MFR) from Boundary Representation (B-rep) models. We transform the original B-rep model into a graph representation as network-friendly input, incorporating local geometric shape and global topological relationships. Leveraging a graph neural network based on Transformer architecture and graph attention mechanism, we extract the feature representation of high-level semantic information to achieve machining feature recognition. Additionally, employing a two-step training strategy under a transfer learning framework, we enhance BrepMFR's generalization ability by adapting synthetic training data to real CAD data. Furthermore, we establish a large-scale synthetic CAD model dataset inclusive of 24 typical machining features, showcasing diversity in geometry that closely mirrors real-world mechanical engineering scenarios. Extensive experiments across various datasets demonstrate that BrepMFR achieves state-of-the-art machining feature recognition accuracy and performs effectively on CAD models of real-world mechanical parts.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.