Simplified toxicity assessment in pharmaceutical and pesticide mixtures: Leveraging interpretable structural parameters

IF 3.1 Q2 TOXICOLOGY
Mohammad Hossein Keshavarz, Zeinab Shirazi, Zeinab Davoodi
{"title":"Simplified toxicity assessment in pharmaceutical and pesticide mixtures: Leveraging interpretable structural parameters","authors":"Mohammad Hossein Keshavarz,&nbsp;Zeinab Shirazi,&nbsp;Zeinab Davoodi","doi":"10.1016/j.comtox.2024.100312","DOIUrl":null,"url":null,"abstract":"<div><p>The potential toxicity arising from antibiotics and pesticides poses a significant risk to the preservation of groundwater. This study investigates the effects of binary mixtures of pharmaceuticals and pesticides by assessing their log <em>EC<sub>50</sub></em>, log <em>EC<sub>30</sub></em>, and log <em>EC<sub>10</sub></em> values in relation to <em>Vibrio fischeri</em> bacteria. Based on a comprehensive dataset of 459 observations, this work identifies suitable simple descriptors. Rigorous statistical analysis confirms the models’ reliability, accuracy, precision, and favorable goodness-of-fit. Notably, the ratios of coefficient of determination (R<sup>2</sup>) for the novel models compared to the best comparative models exceed 1.0: 0.8618/0.8085 for log <em>EC<sub>50</sub></em>, 0.8856/0.8422 for log <em>EC<sub>30</sub></em>, and 0.8973/0.8556 for log <em>EC<sub>10</sub></em>. Additionally, the ratios of root mean square error (RMSE) for the new models relative to their counterparts are all below 1.0: 0.159/0.191 for log <em>EC<sub>50</sub></em>, 0.131/0.169 for log <em>EC<sub>30</sub></em>, and 0.182/0.215 for log <em>EC<sub>10</sub></em>.</p></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468111324000148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The potential toxicity arising from antibiotics and pesticides poses a significant risk to the preservation of groundwater. This study investigates the effects of binary mixtures of pharmaceuticals and pesticides by assessing their log EC50, log EC30, and log EC10 values in relation to Vibrio fischeri bacteria. Based on a comprehensive dataset of 459 observations, this work identifies suitable simple descriptors. Rigorous statistical analysis confirms the models’ reliability, accuracy, precision, and favorable goodness-of-fit. Notably, the ratios of coefficient of determination (R2) for the novel models compared to the best comparative models exceed 1.0: 0.8618/0.8085 for log EC50, 0.8856/0.8422 for log EC30, and 0.8973/0.8556 for log EC10. Additionally, the ratios of root mean square error (RMSE) for the new models relative to their counterparts are all below 1.0: 0.159/0.191 for log EC50, 0.131/0.169 for log EC30, and 0.182/0.215 for log EC10.

简化药物和农药混合物的毒性评估:利用可解释的结构参数
抗生素和杀虫剂的潜在毒性对地下水的保护构成了重大风险。本研究通过评估药物和杀虫剂二元混合物对鱼腥弧菌的对数 EC50、对数 EC30 和对数 EC10 值,研究了它们的影响。基于 459 个观测数据的综合数据集,这项研究确定了合适的简单描述因子。严格的统计分析证实了模型的可靠性、准确性、精确性和良好的拟合度。值得注意的是,与最佳比较模型相比,新型模型的判定系数(R2)之比超过了 1.0:对数 EC50 为 0.8618/0.8085,对数 EC30 为 0.8856/0.8422,对数 EC10 为 0.8973/0.8556。此外,新模型与同类模型的均方根误差(RMSE)之比都低于 1.0:对数 EC50 为 0.159/0.191,对数 EC30 为 0.131/0.169,对数 EC10 为 0.182/0.215。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Toxicology
Computational Toxicology Computer Science-Computer Science Applications
CiteScore
5.50
自引率
0.00%
发文量
53
审稿时长
56 days
期刊介绍: Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信