Ara Jeong , Yeong Bae Seong , Kwang Hee Choi , Zuzanna M. Swirad , Cho-Hee Lee , Byong Yong Yu
{"title":"Shore platform erosion and cliff retreat in the Eastern Korea: A quantified assessment using 10Be concentrations and numerical modeling","authors":"Ara Jeong , Yeong Bae Seong , Kwang Hee Choi , Zuzanna M. Swirad , Cho-Hee Lee , Byong Yong Yu","doi":"10.1016/j.margeo.2024.107291","DOIUrl":null,"url":null,"abstract":"<div><p>Shore platforms, essential for coastal analysis and management, are poorly understood in terms of their long-term evolution, particularly regarding coastal cliff retreat rates and trends, despite their common presence in rocky coastlines. Rock coasts constitute fully erosional environments, yet long-term rates and trends of coastal cliff retreat remain poorly understood. This study adds to the limited number of studies that use cosmogenic isotopes to reconstruct millennial-scale cliff erosion. Cosmogenic <sup>10</sup>Be concentrations were measured in 16 rock samples collected across an active 31 m wide granitic Jangsa shore platform in eastern Korea. A geometry-based inverse numerical model was used to simulate <sup>10</sup>Be concentrations for various cliff retreat modes, relative sea level curves, and platform downwearing models. The model results were combined with measured concentrations to find the most likely scenario for coastal evolution. Our findings reveal that the shore platform has widened through time and is entirely formed during the Holocene, unlike the previous cosmogenic study in western Korea that attributed the formation of shore platforms to former interglacial periods. The results suggest acceleration in cliff retreat rate from 1.4 mm yr<sup>−1</sup> at 7.4 kyr BP to 7.0 mm yr<sup>−1</sup> at present. Accelerating cliff erosion may pose a threat to coastal communities, particularly in the context of observed and predicted anthropogenic sea level rise.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"472 ","pages":"Article 107291"},"PeriodicalIF":2.6000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025322724000756","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Shore platforms, essential for coastal analysis and management, are poorly understood in terms of their long-term evolution, particularly regarding coastal cliff retreat rates and trends, despite their common presence in rocky coastlines. Rock coasts constitute fully erosional environments, yet long-term rates and trends of coastal cliff retreat remain poorly understood. This study adds to the limited number of studies that use cosmogenic isotopes to reconstruct millennial-scale cliff erosion. Cosmogenic 10Be concentrations were measured in 16 rock samples collected across an active 31 m wide granitic Jangsa shore platform in eastern Korea. A geometry-based inverse numerical model was used to simulate 10Be concentrations for various cliff retreat modes, relative sea level curves, and platform downwearing models. The model results were combined with measured concentrations to find the most likely scenario for coastal evolution. Our findings reveal that the shore platform has widened through time and is entirely formed during the Holocene, unlike the previous cosmogenic study in western Korea that attributed the formation of shore platforms to former interglacial periods. The results suggest acceleration in cliff retreat rate from 1.4 mm yr−1 at 7.4 kyr BP to 7.0 mm yr−1 at present. Accelerating cliff erosion may pose a threat to coastal communities, particularly in the context of observed and predicted anthropogenic sea level rise.
期刊介绍:
Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.