Guilherme Ozorio Cassol , Charles Robert Koch , Stevan Dubljevic
{"title":"The chemostat reactor: A stability analysis and model predictive control","authors":"Guilherme Ozorio Cassol , Charles Robert Koch , Stevan Dubljevic","doi":"10.1016/j.jprocont.2024.103223","DOIUrl":null,"url":null,"abstract":"<div><p>This contribution develops the model predictive control for an unstable chemostat reactor. Initially, we analyze the system’s model — a nonlinear first-order hyperbolic partial integro-differential equation (PIDE) — and carry the model linearization around an unstable operating condition. Employing the structure-preserving Cayley–Tustin transformation, we obtain a discrete-time model representation of the continuous model. Subsequently, we solve the operator Ricatti equations in the discrete-time setting to derive a full state feedback controller that stabilizes the closed-loop and design a Luenberger observer for state reconstruction given the system output measures. Finally, we formulate a dual-mode MPC ensuring constraint satisfaction and optimality, integrating the gain-based unconstrained full-state feedback optimal control obtained from the Ricatti equation. This dual-mode strategy describes an optimization problem where the predictive controller acts only if constraints become active within the control horizon. Simulation studies validate the controller performance, where the MPC only takes action if the constraints are predicted to be active within the control horizon while also guaranteeing closed-loop stabilization under only output feedback. This type of controller can be easily implemented with other control strategies and significantly decreases the computational costs of solving the optimal control problems when compared to other MPC approaches.</p></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"138 ","pages":"Article 103223"},"PeriodicalIF":3.3000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424000635","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This contribution develops the model predictive control for an unstable chemostat reactor. Initially, we analyze the system’s model — a nonlinear first-order hyperbolic partial integro-differential equation (PIDE) — and carry the model linearization around an unstable operating condition. Employing the structure-preserving Cayley–Tustin transformation, we obtain a discrete-time model representation of the continuous model. Subsequently, we solve the operator Ricatti equations in the discrete-time setting to derive a full state feedback controller that stabilizes the closed-loop and design a Luenberger observer for state reconstruction given the system output measures. Finally, we formulate a dual-mode MPC ensuring constraint satisfaction and optimality, integrating the gain-based unconstrained full-state feedback optimal control obtained from the Ricatti equation. This dual-mode strategy describes an optimization problem where the predictive controller acts only if constraints become active within the control horizon. Simulation studies validate the controller performance, where the MPC only takes action if the constraints are predicted to be active within the control horizon while also guaranteeing closed-loop stabilization under only output feedback. This type of controller can be easily implemented with other control strategies and significantly decreases the computational costs of solving the optimal control problems when compared to other MPC approaches.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.