Benedikt Schoser , Nina Raben , Fatbardha Varfaj , Mark Walzer , Antonio Toscano
{"title":"Acid α-glucosidase (GAA) activity and glycogen content in muscle biopsy specimens of patients with Pompe disease: A systematic review","authors":"Benedikt Schoser , Nina Raben , Fatbardha Varfaj , Mark Walzer , Antonio Toscano","doi":"10.1016/j.ymgmr.2024.101085","DOIUrl":null,"url":null,"abstract":"<div><p>Pompe disease is a rare genetic disorder characterized by a deficiency of acid α-glucosidase (GAA), leading to the accumulation of glycogen in various tissues, especially in skeletal muscles. The disease manifests as a large spectrum of phenotypes from infantile-onset Pompe disease (IOPD) to late-onset Pompe disease (LOPD), depending on the age of symptoms onset. Quantifying GAA activity and glycogen content in skeletal muscle provides important information about the disease severity. However, the distribution of GAA and glycogen levels in skeletal muscles from healthy individuals and those impacted by Pompe disease remains poorly understood, and there is currently no universally accepted standard assay for GAA activity measurement. This systematic literature review aims to provide an overview of the available information on GAA activity and glycogen content levels in skeletal muscle biopsies from patients with Pompe disease.</p><p>A structured review of PubMed and Google Scholar literature (with the latter used to check that no additional publications were identified) was conducted to identify peer-reviewed publications on glycogen storage disease type II [MeSH term] + GAA, protein human (supplementary concept), Pompe, muscle; and muscle, acid alpha-glucosidase. A limit of English language was applied. Results were grouped by methodologies used to quantify GAA activity and glycogen content in skeletal muscle. The search and selection strategy were devised and carried out in line with Preferred Reporting of Items in Systematic Reviews and Meta-Analysis guidelines and documented using a flowchart. Bibliographies of papers included in the analysis were reviewed and applicable publications not already identified in the search were included.</p><p>Of the 158 articles retrieved, 24 (comprising >100 muscle biopsies from >100 patients) were included in the analysis, with four different assays. Analysis revealed that patients with IOPD exhibited markedly lower GAA activity in skeletal muscles than those with LOPD, regardless of the measurement method employed. Additionally, patients with IOPD had notably higher glycogen content levels in skeletal muscles than those with LOPD. In general, however, it was difficult to fully characterize GAA activity because of the different methods used. The findings underscore the challenges in the interpretation and comparison of the results across studies because of the substantial methodological variations. There is a need to establish standardized reference ranges of GAA activity and glycogen content in healthy individuals and in Pompe disease patients based on globally standardized methods to improve comparability and reliability in assessing this rare disease.</p></div>","PeriodicalId":18814,"journal":{"name":"Molecular Genetics and Metabolism Reports","volume":"39 ","pages":"Article 101085"},"PeriodicalIF":1.8000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214426924000387/pdfft?md5=7a6c91e4ce9647f2b38f21d11da753cc&pid=1-s2.0-S2214426924000387-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Metabolism Reports","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214426924000387","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Pompe disease is a rare genetic disorder characterized by a deficiency of acid α-glucosidase (GAA), leading to the accumulation of glycogen in various tissues, especially in skeletal muscles. The disease manifests as a large spectrum of phenotypes from infantile-onset Pompe disease (IOPD) to late-onset Pompe disease (LOPD), depending on the age of symptoms onset. Quantifying GAA activity and glycogen content in skeletal muscle provides important information about the disease severity. However, the distribution of GAA and glycogen levels in skeletal muscles from healthy individuals and those impacted by Pompe disease remains poorly understood, and there is currently no universally accepted standard assay for GAA activity measurement. This systematic literature review aims to provide an overview of the available information on GAA activity and glycogen content levels in skeletal muscle biopsies from patients with Pompe disease.
A structured review of PubMed and Google Scholar literature (with the latter used to check that no additional publications were identified) was conducted to identify peer-reviewed publications on glycogen storage disease type II [MeSH term] + GAA, protein human (supplementary concept), Pompe, muscle; and muscle, acid alpha-glucosidase. A limit of English language was applied. Results were grouped by methodologies used to quantify GAA activity and glycogen content in skeletal muscle. The search and selection strategy were devised and carried out in line with Preferred Reporting of Items in Systematic Reviews and Meta-Analysis guidelines and documented using a flowchart. Bibliographies of papers included in the analysis were reviewed and applicable publications not already identified in the search were included.
Of the 158 articles retrieved, 24 (comprising >100 muscle biopsies from >100 patients) were included in the analysis, with four different assays. Analysis revealed that patients with IOPD exhibited markedly lower GAA activity in skeletal muscles than those with LOPD, regardless of the measurement method employed. Additionally, patients with IOPD had notably higher glycogen content levels in skeletal muscles than those with LOPD. In general, however, it was difficult to fully characterize GAA activity because of the different methods used. The findings underscore the challenges in the interpretation and comparison of the results across studies because of the substantial methodological variations. There is a need to establish standardized reference ranges of GAA activity and glycogen content in healthy individuals and in Pompe disease patients based on globally standardized methods to improve comparability and reliability in assessing this rare disease.
期刊介绍:
Molecular Genetics and Metabolism Reports is an open access journal that publishes molecular and metabolic reports describing investigations that use the tools of biochemistry and molecular biology for studies of normal and diseased states. In addition to original research articles, sequence reports, brief communication reports and letters to the editor are considered.