Entropic regularization of neural networks: Self-similar approximations

Pub Date : 2024-04-16 DOI:10.1016/j.jspi.2024.106181
Amir R. Asadi, Po-Ling Loh
{"title":"Entropic regularization of neural networks: Self-similar approximations","authors":"Amir R. Asadi,&nbsp;Po-Ling Loh","doi":"10.1016/j.jspi.2024.106181","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on entropic regularization and its multiscale extension in neural network learning. We leverage established results that characterize the optimizer of entropic regularization methods and their connection with generalization bounds. To avoid the significant computational complexity involved in sampling from the optimal multiscale Gibbs distributions, we describe how to make measured concessions in optimality by using self-similar approximating distributions. We study such scale-invariant approximations for linear neural networks and further extend the approximations to neural networks with nonlinear activation functions. We then illustrate the application of our proposed approach through empirical simulation. By navigating the interplay between optimization and computational efficiency, our research contributes to entropic regularization theory, proposing a practical method that embraces symmetry across scales.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378375824000387/pdfft?md5=fcc1f48fea9b9d957df56a1c168f3f74&pid=1-s2.0-S0378375824000387-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on entropic regularization and its multiscale extension in neural network learning. We leverage established results that characterize the optimizer of entropic regularization methods and their connection with generalization bounds. To avoid the significant computational complexity involved in sampling from the optimal multiscale Gibbs distributions, we describe how to make measured concessions in optimality by using self-similar approximating distributions. We study such scale-invariant approximations for linear neural networks and further extend the approximations to neural networks with nonlinear activation functions. We then illustrate the application of our proposed approach through empirical simulation. By navigating the interplay between optimization and computational efficiency, our research contributes to entropic regularization theory, proposing a practical method that embraces symmetry across scales.

分享
查看原文
神经网络的熵正则化:自相似近似
本文重点研究神经网络学习中的熵正则化及其多尺度扩展。我们利用已有的结果来描述熵正则化方法的优化器及其与泛化边界的联系。为了避免从最优多尺度吉布斯分布中采样所带来的巨大计算复杂性,我们介绍了如何通过使用自相似近似分布,在最优性方面做出一定程度的让步。我们研究了线性神经网络的规模不变近似,并进一步将近似扩展到具有非线性激活函数的神经网络。然后,我们通过实证模拟来说明我们提出的方法的应用。通过在优化和计算效率之间的相互作用,我们的研究为熵正则化理论做出了贡献,提出了一种跨尺度对称的实用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信