Key arginine residues in R2D2 dsRBD1 and dsRBD2 lead the siRNA recognition in Drosophila melanogaster RNAi pathway

IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ramdas Aute , Nilam Waghela , Mandar V. Deshmukh
{"title":"Key arginine residues in R2D2 dsRBD1 and dsRBD2 lead the siRNA recognition in Drosophila melanogaster RNAi pathway","authors":"Ramdas Aute ,&nbsp;Nilam Waghela ,&nbsp;Mandar V. Deshmukh","doi":"10.1016/j.bpc.2024.107247","DOIUrl":null,"url":null,"abstract":"<div><p>In <em>Drosophila melanogaster</em>, Dcr-2:R2D2 heterodimer binds to the 21 nucleotide siRNA duplex to form the R2D2/Dcr-2 Initiator (RDI) complex, which is critical for the initiation of siRNA-induced silencing complex (RISC) assembly. During RDI complex formation, R2D2, a protein that contains three dsRNA binding domains (dsRBD), senses two aspects of the siRNA: thermodynamically more stable end (asymmetry sensing) and the 5′-phosphate (5<em>'</em><em>-</em>P) recognition. Despite several detailed studies to date, the molecular determinants arising from R2D2 for performing these two tasks remain elusive. In this study, we have performed structural, biophysical, and biochemical characterization of R2D2 dsRBDs. We found that the solution NMR-derived structure of R2D2 dsRBD1 yielded a canonical α1-β1-β2-β3-α2 fold, wherein two arginine salt bridges provide additional stability to the R2D2 dsRBD1. Furthermore, we show that R2D2 dsRBD1 interacts with thermodynamically asymmetric siRNA duplex independent of its 5′-phosphorylation state, whereas R2D2 dsRBD2 prefers to interact with 5<em>'</em>-P siRNA duplex. The mutation of key arginine residues, R53 and R101, in concatenated dsRBDs of R2D2 results in a significant loss of siRNA duplex recognition. Our study deciphers the active roles of R2D2 dsRBDs by showing that dsRBD1 initiates siRNA recognition, whereas dsRBD2 senses 5′-phosphate as an authentic mark on functional siRNA.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"310 ","pages":"Article 107247"},"PeriodicalIF":3.3000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224000760","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In Drosophila melanogaster, Dcr-2:R2D2 heterodimer binds to the 21 nucleotide siRNA duplex to form the R2D2/Dcr-2 Initiator (RDI) complex, which is critical for the initiation of siRNA-induced silencing complex (RISC) assembly. During RDI complex formation, R2D2, a protein that contains three dsRNA binding domains (dsRBD), senses two aspects of the siRNA: thermodynamically more stable end (asymmetry sensing) and the 5′-phosphate (5'-P) recognition. Despite several detailed studies to date, the molecular determinants arising from R2D2 for performing these two tasks remain elusive. In this study, we have performed structural, biophysical, and biochemical characterization of R2D2 dsRBDs. We found that the solution NMR-derived structure of R2D2 dsRBD1 yielded a canonical α1-β1-β2-β3-α2 fold, wherein two arginine salt bridges provide additional stability to the R2D2 dsRBD1. Furthermore, we show that R2D2 dsRBD1 interacts with thermodynamically asymmetric siRNA duplex independent of its 5′-phosphorylation state, whereas R2D2 dsRBD2 prefers to interact with 5'-P siRNA duplex. The mutation of key arginine residues, R53 and R101, in concatenated dsRBDs of R2D2 results in a significant loss of siRNA duplex recognition. Our study deciphers the active roles of R2D2 dsRBDs by showing that dsRBD1 initiates siRNA recognition, whereas dsRBD2 senses 5′-phosphate as an authentic mark on functional siRNA.

Abstract Image

R2D2 dsRBD1 和 dsRBD2 中的关键精氨酸残基在黑腹果蝇 RNAi 通路中引领 siRNA 识别
在黑腹果蝇中,Dcr-2:R2D2异源二聚体与21个核苷酸的siRNA双链体结合,形成R2D2/Dcr-2启动子(RDI)复合物,这对启动siRNA诱导的沉默复合物(RISC)组装至关重要。在 RDI 复合物形成过程中,包含三个 dsRNA 结合结构域(dsRBD)的蛋白质 R2D2 会感知 siRNA 的两个方面:热力学上更稳定的末端(不对称感知)和 5′-磷酸(5'-P)识别。尽管迄今为止已进行了多项详细研究,但 R2D2 执行这两项任务的分子决定因素仍然难以捉摸。在这项研究中,我们对 R2D2 dsRBDs 进行了结构、生物物理和生物化学鉴定。我们发现 R2D2 dsRBD1 的溶液核磁共振衍生结构产生了一个典型的 α1-β1-β2-β3-α2 折叠,其中两个精氨酸盐桥为 R2D2 dsRBD1 提供了额外的稳定性。此外,我们还发现 R2D2 dsRBD1 与热力学上不对称的 siRNA 双链相互作用,与其 5′-磷酸化状态无关,而 R2D2 dsRBD2 则更喜欢与 5'-P siRNA 双链相互作用。R2D2 dsRBD2 连接的关键精氨酸残基 R53 和 R101 的突变导致 siRNA 双链体识别能力的显著丧失。我们的研究揭示了 R2D2 dsRBDs 的活性作用,表明 dsRBD1 启动 siRNA 识别,而 dsRBD2 感知 5′-磷酸作为功能 siRNA 的真实标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical chemistry
Biophysical chemistry 生物-生化与分子生物学
CiteScore
6.10
自引率
10.50%
发文量
121
审稿时长
20 days
期刊介绍: Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信