Cation Exchange in Colloidal Transition Metal Nitride Nanocrystals

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lei Yang, Liping Zhang, Ye Li, Byoung-Hoon Lee, Jiheon Kim, Hyeon Seok Lee, Jinsol Bok, Yanbo Ma, Wansheng Zhou, Du Yuan, An-Liang Wang, Megalamane S. Bootharaju, Hemin Zhang*, Taeghwan Hyeon* and Junze Chen*, 
{"title":"Cation Exchange in Colloidal Transition Metal Nitride Nanocrystals","authors":"Lei Yang,&nbsp;Liping Zhang,&nbsp;Ye Li,&nbsp;Byoung-Hoon Lee,&nbsp;Jiheon Kim,&nbsp;Hyeon Seok Lee,&nbsp;Jinsol Bok,&nbsp;Yanbo Ma,&nbsp;Wansheng Zhou,&nbsp;Du Yuan,&nbsp;An-Liang Wang,&nbsp;Megalamane S. Bootharaju,&nbsp;Hemin Zhang*,&nbsp;Taeghwan Hyeon* and Junze Chen*,&nbsp;","doi":"10.1021/jacs.4c01219","DOIUrl":null,"url":null,"abstract":"<p >Transition metal nitride (TMN)-based nanostructures have emerged as promising materials for diverse applications in electronics, photonics, energy storage, and catalysis due to their highly desirable physicochemical properties. However, synthesizing TMN-based nanostructures with designed compositions and morphologies poses challenges, especially in the solution phase. The cation exchange reaction (CER) stands out as a versatile postsynthetic strategy for preparing nanostructures that are otherwise inaccessible through direct synthesis. Nevertheless, exploration of the CER in TMNs lags behind that in metal chalcogenides and metal phosphides. Here, we demonstrate cation exchange in colloidal metal nitride nanocrystals, employing Cu<sub>3</sub>N nanocrystals as starting materials to synthesize Ni<sub>4</sub>N and CoN nanocrystals. By controlling the reaction conditions, Cu<sub>3</sub>N@Ni<sub>4</sub>N and Cu<sub>3</sub>N@CoN core@shell heterostructures with tunable compositions can also be obtained. The Ni<sub>4</sub>N and CoN nanocrystals are evaluated as catalysts for the electrochemical oxygen evolution reaction (OER). Remarkably, CoN nanocrystals demonstrate superior OER performance with a low overpotential of 286 mV at 10 mA·cm<sup>–2</sup>, a small Tafel slope of 89 mV·dec<sup>–1</sup>, and long-term stability. Our CER approach in colloidal TMNs offers a new strategy for preparing other metal nitride nanocrystals and their heterostructures, paving the way for prospective applications.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"146 18","pages":"12556–12564"},"PeriodicalIF":15.6000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c01219","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal nitride (TMN)-based nanostructures have emerged as promising materials for diverse applications in electronics, photonics, energy storage, and catalysis due to their highly desirable physicochemical properties. However, synthesizing TMN-based nanostructures with designed compositions and morphologies poses challenges, especially in the solution phase. The cation exchange reaction (CER) stands out as a versatile postsynthetic strategy for preparing nanostructures that are otherwise inaccessible through direct synthesis. Nevertheless, exploration of the CER in TMNs lags behind that in metal chalcogenides and metal phosphides. Here, we demonstrate cation exchange in colloidal metal nitride nanocrystals, employing Cu3N nanocrystals as starting materials to synthesize Ni4N and CoN nanocrystals. By controlling the reaction conditions, Cu3N@Ni4N and Cu3N@CoN core@shell heterostructures with tunable compositions can also be obtained. The Ni4N and CoN nanocrystals are evaluated as catalysts for the electrochemical oxygen evolution reaction (OER). Remarkably, CoN nanocrystals demonstrate superior OER performance with a low overpotential of 286 mV at 10 mA·cm–2, a small Tafel slope of 89 mV·dec–1, and long-term stability. Our CER approach in colloidal TMNs offers a new strategy for preparing other metal nitride nanocrystals and their heterostructures, paving the way for prospective applications.

Abstract Image

Abstract Image

胶体过渡金属氮化物纳米晶体中的阳离子交换
基于过渡金属氮化物(TMN)的纳米结构因其非常理想的物理化学特性,已成为在电子、光子学、能量存储和催化等领域具有广泛应用前景的材料。然而,合成具有设计成分和形态的 TMN 基纳米结构面临着挑战,尤其是在溶液阶段。阳离子交换反应 (CER) 是一种多功能的后合成策略,可用于制备直接合成无法获得的纳米结构。然而,对 TMNs 中阳离子交换反应的探索还落后于对金属瑀和金属磷化物中阳离子交换反应的探索。在这里,我们利用 Cu3N 纳米晶体作为合成 Ni4N 和 CoN 纳米晶体的起始材料,展示了胶体金属氮化物纳米晶体中的阳离子交换。通过控制反应条件,还可以获得成分可调的 Cu3N@Ni4N 和 Cu3N@CoN 核@壳异质结构。Ni4N 和 CoN 纳米晶体被评估为电化学氧进化反应(OER)的催化剂。值得注意的是,CoN 纳米晶体表现出卓越的 OER 性能,在 10 mA-cm-2 条件下过电位低至 286 mV,塔菲尔斜率小至 89 mV-dec-1,并且具有长期稳定性。我们在胶体 TMN 中采用的 CER 方法为制备其他金属氮化物纳米晶体及其异质结构提供了一种新策略,为未来的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
文献相关原料
公司名称
产品信息
阿拉丁
potassium hydroxide
阿拉丁
oleylamine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信