{"title":"Circular Polarized Antennas With Harmonic Radar: Passive Nonlinear Tag Localization","authors":"Vishal G Yadav;Leya Zeng;Changzhi Li","doi":"10.1109/JSAS.2024.3378157","DOIUrl":null,"url":null,"abstract":"This research proposes a high performance, low-profile planar design, and demonstration of circularly polarized harmonic antenna arrays for 4 and 8 GHz harmonic radar system, which is equipped, and the antenna's circular polarization (CP) performance is tested using a passive nonlinear harmonic tag (snowflake) in a noisy environment. This work mainly concentrates on investigation of the wave polarization (circular), gain estimation and impedance matching of the antenna arrays that will be potentially assembled to the second-order harmonic radar system operating at 4 and 8 GHz, which plays a critical role in 2-D tag localization and post processing methods. The passive snowflake tag design is implemented in the simulation to determine the current distribution and gain plot patterns in comparison to a classic dipole antenna tag structure. In experiments: a combination of fundamental circular polarized (left-hand) antennas were demonstrated to find axial ratio \n<inline-formula><tex-math>$ \\leq $</tex-math></inline-formula>\n 3 dB band. A novel tag 2-D localization measurement, combination of CP harmonic antenna arrays is utilized to perform and obtain the circular polarized received signal power in dBm versus angle rotation by every 10° on a rotating platform setup. Finally, the wireless tag tracking result is achieved by using the designed circularly polarized antennas and the passive nonlinear tag orientation setup.","PeriodicalId":100622,"journal":{"name":"IEEE Journal of Selected Areas in Sensors","volume":"1 ","pages":"9-19"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10474130","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Areas in Sensors","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10474130/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This research proposes a high performance, low-profile planar design, and demonstration of circularly polarized harmonic antenna arrays for 4 and 8 GHz harmonic radar system, which is equipped, and the antenna's circular polarization (CP) performance is tested using a passive nonlinear harmonic tag (snowflake) in a noisy environment. This work mainly concentrates on investigation of the wave polarization (circular), gain estimation and impedance matching of the antenna arrays that will be potentially assembled to the second-order harmonic radar system operating at 4 and 8 GHz, which plays a critical role in 2-D tag localization and post processing methods. The passive snowflake tag design is implemented in the simulation to determine the current distribution and gain plot patterns in comparison to a classic dipole antenna tag structure. In experiments: a combination of fundamental circular polarized (left-hand) antennas were demonstrated to find axial ratio
$ \leq $
3 dB band. A novel tag 2-D localization measurement, combination of CP harmonic antenna arrays is utilized to perform and obtain the circular polarized received signal power in dBm versus angle rotation by every 10° on a rotating platform setup. Finally, the wireless tag tracking result is achieved by using the designed circularly polarized antennas and the passive nonlinear tag orientation setup.