3D formulation of mono-symmetrical composite beams with deformable connection

IF 3.5 3区 工程技术 Q1 MATHEMATICS, APPLIED
Yassir Wardi, Pisey Keo, Mohammed Hjiaj
{"title":"3D formulation of mono-symmetrical composite beams with deformable connection","authors":"Yassir Wardi,&nbsp;Pisey Keo,&nbsp;Mohammed Hjiaj","doi":"10.1016/j.finel.2024.104163","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with a 3D linear formulation for mono-symmetric composite beams with deformable connection, taking into account non-uniform torsion. To simplify the development of the analytical solution, it is assumed that the warping of each layer of the composite section has no contribution on the stress resultants of each layer. Therefore, the warping function obtained with the classical St-Venant beam theory can be used for each subsection. As a result, the variables associated to both connection shearing plans become uncoupled. Using the virtual work principle, the governing equations are derived, and solved in closed-form. Based on the analytical expressions of the displacement fields, the exact stiffness matrix of the composite beam is computed. In addition, a displacement-based formulation is suggested. Appropriate polynomial interpolation functions are selected to circumvent slip-locking phenomenon. It has been shown that the slip-locking can be avoided by using quadratic shape function for axial displacement interpolations, by providing an additional middle node in each layer. Four examples are investigated in this paper. The prediction as well as the performance of the proposed direct stiffness method, are compared against an existing solution from the literature. In addition, slip-locking problem is addressed and the performance of the displacement-based method against the exact formulation is evaluated. The influence of warping effects on the composite beam response is assessed. Finally, a parametric study is conducted to evaluate the influence of connection rigidity and the coupling of the displacement fields on slip distributions.</p></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X2400057X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with a 3D linear formulation for mono-symmetric composite beams with deformable connection, taking into account non-uniform torsion. To simplify the development of the analytical solution, it is assumed that the warping of each layer of the composite section has no contribution on the stress resultants of each layer. Therefore, the warping function obtained with the classical St-Venant beam theory can be used for each subsection. As a result, the variables associated to both connection shearing plans become uncoupled. Using the virtual work principle, the governing equations are derived, and solved in closed-form. Based on the analytical expressions of the displacement fields, the exact stiffness matrix of the composite beam is computed. In addition, a displacement-based formulation is suggested. Appropriate polynomial interpolation functions are selected to circumvent slip-locking phenomenon. It has been shown that the slip-locking can be avoided by using quadratic shape function for axial displacement interpolations, by providing an additional middle node in each layer. Four examples are investigated in this paper. The prediction as well as the performance of the proposed direct stiffness method, are compared against an existing solution from the literature. In addition, slip-locking problem is addressed and the performance of the displacement-based method against the exact formulation is evaluated. The influence of warping effects on the composite beam response is assessed. Finally, a parametric study is conducted to evaluate the influence of connection rigidity and the coupling of the displacement fields on slip distributions.

具有可变形连接的单对称复合梁的三维模型
本文讨论了具有可变形连接的单对称复合梁的三维线性公式,并考虑了非均匀扭转。为了简化分析求解的过程,假定复合材料截面各层的翘曲对各层的应力结果不产生影响。因此,每个分段都可以使用经典的 St-Venant 梁理论得到的翘曲函数。因此,与两个连接剪切方案相关的变量变得不相关。利用虚功原理推导出控制方程,并以闭合形式求解。根据位移场的分析表达式,计算出了复合梁的精确刚度矩阵。此外,还提出了一种基于位移的计算方法。选择适当的多项式插值函数来规避滑锁现象。研究表明,通过在每层增加一个中间节点,使用二次形状函数进行轴向位移插值,可以避免滑锁现象。本文研究了四个实例。将所提出的直接刚度法的预测结果和性能与文献中现有的解决方案进行了比较。此外,本文还讨论了滑锁问题,并评估了基于位移的方法与精确公式的性能。评估了翘曲效应对复合梁响应的影响。最后,还进行了参数研究,以评估连接刚度和位移场耦合对滑移分布的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
3.20%
发文量
92
审稿时长
27 days
期刊介绍: The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信