{"title":"Neuroinflammation induced by amyloid-forming pancreatic amylin: Rationale for a mechanistic hypothesis","authors":"Noah S. Leibold, Florin Despa","doi":"10.1016/j.bpc.2024.107252","DOIUrl":null,"url":null,"abstract":"<div><p>Amylin is a systemic neuroendocrine hormone co-expressed and co-secreted with insulin by pancreatic β-cells. In persons with thype-2 diabetes, amylin forms pancreatic amyloid triggering inflammasome and interleukin-1β signaling and inducing β-cell apoptosis. Here, we summarize recent progress in understanding the potential link between amyloid-forming pancreatic amylin and Alzheimer's disease (AD). Clinical data describing amylin pathology in AD alongside mechanistic studies in animals are reviewed. Data from multiple research teams indicate higher amylin concentrations are associated with increased frequency of cognitive impairment and amylin co-aggregates with β-amyloid in AD-type dementia. Evidence from rodent models further suggests cerebrovascular amylin accumulation as a causative factor underlying neurological deficits. Analysis of relevant literature suggests that modulating the amylin-interleukin-1β pathway may provide an approach for counteracting neuroinflammation in AD.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"310 ","pages":"Article 107252"},"PeriodicalIF":3.3000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224000814","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Amylin is a systemic neuroendocrine hormone co-expressed and co-secreted with insulin by pancreatic β-cells. In persons with thype-2 diabetes, amylin forms pancreatic amyloid triggering inflammasome and interleukin-1β signaling and inducing β-cell apoptosis. Here, we summarize recent progress in understanding the potential link between amyloid-forming pancreatic amylin and Alzheimer's disease (AD). Clinical data describing amylin pathology in AD alongside mechanistic studies in animals are reviewed. Data from multiple research teams indicate higher amylin concentrations are associated with increased frequency of cognitive impairment and amylin co-aggregates with β-amyloid in AD-type dementia. Evidence from rodent models further suggests cerebrovascular amylin accumulation as a causative factor underlying neurological deficits. Analysis of relevant literature suggests that modulating the amylin-interleukin-1β pathway may provide an approach for counteracting neuroinflammation in AD.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.