Mehdi Hosseinzadeh , Saqib Ali , Husham Jawad Ahmad , Faisal Alanazi , Mohammad Sadegh Yousefpoor , Efat Yousefpoor , Aso Darwesh , Amir Masoud Rahmani , Sang-Woong Lee
{"title":"DCFH: A dynamic clustering approach based on fire hawk optimizer in flying ad hoc networks","authors":"Mehdi Hosseinzadeh , Saqib Ali , Husham Jawad Ahmad , Faisal Alanazi , Mohammad Sadegh Yousefpoor , Efat Yousefpoor , Aso Darwesh , Amir Masoud Rahmani , Sang-Woong Lee","doi":"10.1016/j.vehcom.2024.100778","DOIUrl":null,"url":null,"abstract":"<div><p>In flying ad hoc networks (FANETs), unmanned aerial vehicles (UAVs) communicate with each other without any fixed infrastructure. Because of frequent topological changes, instability of wireless communication, three-dimensional movement of UAVs, and limited resources, especially energy, FANETs deal with many challenges, especially the instability of UAV swarms. One solution to address these problems is clustering because it maintains network performance and increases scalability. In this paper, a <strong><u>d</u></strong>ynamic <strong><u>c</u></strong>lustering scheme based on <strong><u>f</u></strong>ire <strong><u>h</u></strong>awk optimizer (DCFH) is proposed for FANETs. In DCFH, each cluster head calculates the period of hello messages in its cluster based on its velocity. Then, a fire hawk optimizer (FHO)-based dynamic clustering operation is carried out to determine the role of each UAV (cluster head (CH) or cluster member (CM)) in the network. To calculate the fitness value of each fire hawk, a fitness function is suggested based on four elements, namely the balance of energy consumption, the number of isolated clusters, the distribution of CHs, and the neighbor degree. To improve cluster stability, each CH manages the movement of its CMs and adjusts it based on its movement in the network. In the last phase, DCFH defines a greedy routing process to determine the next-hop node based on a score, which consists of distance between CHs, energy, and buffer capacity. Finally, DCFH is simulated using the network simulator version 2 (NS2), and its performance is compared with three methods, including the mobility-based weighted cluster routing scheme (MWCRSF), the dynamic clustering mechanism (DCM), and the Grey wolf optimization (GWO)-based clustering protocol. The simulation results show that DCFH well manages the number of clusters in the network. It improves the cluster construction time (about 55.51%), cluster lifetime (approximately 11.13%), energy consumption (about 15.16%), network lifetime (about 2.6%), throughput (approximately 3.9%), packet delivery rate (about 0.61%), and delay (approximately 14.29%). However, its overhead is approximately 8.72% more than MWCRSF.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"47 ","pages":"Article 100778"},"PeriodicalIF":5.8000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209624000536","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In flying ad hoc networks (FANETs), unmanned aerial vehicles (UAVs) communicate with each other without any fixed infrastructure. Because of frequent topological changes, instability of wireless communication, three-dimensional movement of UAVs, and limited resources, especially energy, FANETs deal with many challenges, especially the instability of UAV swarms. One solution to address these problems is clustering because it maintains network performance and increases scalability. In this paper, a dynamic clustering scheme based on fire hawk optimizer (DCFH) is proposed for FANETs. In DCFH, each cluster head calculates the period of hello messages in its cluster based on its velocity. Then, a fire hawk optimizer (FHO)-based dynamic clustering operation is carried out to determine the role of each UAV (cluster head (CH) or cluster member (CM)) in the network. To calculate the fitness value of each fire hawk, a fitness function is suggested based on four elements, namely the balance of energy consumption, the number of isolated clusters, the distribution of CHs, and the neighbor degree. To improve cluster stability, each CH manages the movement of its CMs and adjusts it based on its movement in the network. In the last phase, DCFH defines a greedy routing process to determine the next-hop node based on a score, which consists of distance between CHs, energy, and buffer capacity. Finally, DCFH is simulated using the network simulator version 2 (NS2), and its performance is compared with three methods, including the mobility-based weighted cluster routing scheme (MWCRSF), the dynamic clustering mechanism (DCM), and the Grey wolf optimization (GWO)-based clustering protocol. The simulation results show that DCFH well manages the number of clusters in the network. It improves the cluster construction time (about 55.51%), cluster lifetime (approximately 11.13%), energy consumption (about 15.16%), network lifetime (about 2.6%), throughput (approximately 3.9%), packet delivery rate (about 0.61%), and delay (approximately 14.29%). However, its overhead is approximately 8.72% more than MWCRSF.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.