Clopper-Pearson Algorithms for Efficient Statistical Model Checking Estimation

IF 6.5 1区 计算机科学 Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Hao Bu;Meng Sun
{"title":"Clopper-Pearson Algorithms for Efficient Statistical Model Checking Estimation","authors":"Hao Bu;Meng Sun","doi":"10.1109/TSE.2024.3392720","DOIUrl":null,"url":null,"abstract":"Statistical model checking (SMC) is a simulation-based formal verification technique to deal with the scalability problem faced by traditional model checking. The main workflow of SMC is to perform iterative simulations. The number of simulations depends on users’ requirement for the verification results, which can be very large if users require a high level of confidence and precision. Therefore, how to perform as fewer simulations as possible while achieving the same level of confidence and precision is one of the core problems of SMC. In this paper, we consider the estimation problem of SMC. Most existing statistical model checkers use the Okamoto bound to decide the simulation number. Although the Okamoto bound is sound, it is well known to be overly conservative. The simulation number decided by the Okamoto bound is usually much higher than it actually needs, which leads to a waste of time and computation resources. To tackle this problem, we propose an efficient, sound and lightweight estimation algorithm using the Clopper-Pearson confidence interval. We perform comprehensive numerical experiments and case studies to evaluate the performance of our algorithm, and the results show that our algorithm uses 40%-60% fewer simulations than the Okamoto bound. Our algorithm can be directly integrated into existing model checkers to reduce the verification time of SMC estimation problems.","PeriodicalId":13324,"journal":{"name":"IEEE Transactions on Software Engineering","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Software Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10507153/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Statistical model checking (SMC) is a simulation-based formal verification technique to deal with the scalability problem faced by traditional model checking. The main workflow of SMC is to perform iterative simulations. The number of simulations depends on users’ requirement for the verification results, which can be very large if users require a high level of confidence and precision. Therefore, how to perform as fewer simulations as possible while achieving the same level of confidence and precision is one of the core problems of SMC. In this paper, we consider the estimation problem of SMC. Most existing statistical model checkers use the Okamoto bound to decide the simulation number. Although the Okamoto bound is sound, it is well known to be overly conservative. The simulation number decided by the Okamoto bound is usually much higher than it actually needs, which leads to a waste of time and computation resources. To tackle this problem, we propose an efficient, sound and lightweight estimation algorithm using the Clopper-Pearson confidence interval. We perform comprehensive numerical experiments and case studies to evaluate the performance of our algorithm, and the results show that our algorithm uses 40%-60% fewer simulations than the Okamoto bound. Our algorithm can be directly integrated into existing model checkers to reduce the verification time of SMC estimation problems.
高效统计模型检验估算的 Clopper-Pearson 算法
统计模型检查(SMC)是一种基于仿真的形式化验证技术,用于解决传统模型检查面临的可扩展性问题。SMC 的主要工作流程是执行迭代模拟。仿真的次数取决于用户对验证结果的要求,如果用户对验证结果的置信度和精度要求很高,那么仿真的次数就会非常多。因此,如何在达到相同置信度和精度的前提下尽可能减少模拟次数是 SMC 的核心问题之一。本文考虑的是 SMC 的估计问题。现有的统计模型检验器大多使用冈本约束来决定模拟次数。尽管冈本约束是合理的,但众所周知它过于保守。根据冈本约束确定的模拟次数通常比实际需要的要高得多,从而导致时间和计算资源的浪费。为了解决这个问题,我们提出了一种使用 Clopper-Pearson 置信区间的高效、合理和轻量级估计算法。我们进行了全面的数值实验和案例研究来评估我们算法的性能,结果表明我们算法的模拟次数比 Okamoto 约束少 40%-60%。我们的算法可以直接集成到现有的模型检查器中,以减少 SMC 估计问题的验证时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Software Engineering
IEEE Transactions on Software Engineering 工程技术-工程:电子与电气
CiteScore
9.70
自引率
10.80%
发文量
724
审稿时长
6 months
期刊介绍: IEEE Transactions on Software Engineering seeks contributions comprising well-defined theoretical results and empirical studies with potential impacts on software construction, analysis, or management. The scope of this Transactions extends from fundamental mechanisms to the development of principles and their application in specific environments. Specific topic areas include: a) Development and maintenance methods and models: Techniques and principles for specifying, designing, and implementing software systems, encompassing notations and process models. b) Assessment methods: Software tests, validation, reliability models, test and diagnosis procedures, software redundancy, design for error control, and measurements and evaluation of process and product aspects. c) Software project management: Productivity factors, cost models, schedule and organizational issues, and standards. d) Tools and environments: Specific tools, integrated tool environments, associated architectures, databases, and parallel and distributed processing issues. e) System issues: Hardware-software trade-offs. f) State-of-the-art surveys: Syntheses and comprehensive reviews of the historical development within specific areas of interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信