{"title":"Simulation of an Electrothermal Explosion of a Gas-Free System. Effect of Conductive Heat Exchange and Joule Heating Power","authors":"A. V. Shcherbakov, V. A. Shcherbakov","doi":"10.1134/s0010508224010064","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Mathematical modeling is applied to study the electrothermal explosion conditions of a gasless system surrounded by a dielectric medium. It is shown how conductive heat exchange intensity and Joule heating power affect the formation of dimensionless temperature and concentration profiles, the integral depth of transformation, and the reaction front propagation velocity. The stages of ignition and reaction propagation are divided using a criterion that assumes a conversion depth of 0.99 at any point in the sample. The amount of product formed at the ignition stage is determined. It is demonstrated that a large transformation depth is achieved near critical conditions during ignition on the axis of the sample, thereby causing the displacement of the ignition zone from the axis to the surface of the sample.</p>","PeriodicalId":10509,"journal":{"name":"Combustion, Explosion, and Shock Waves","volume":"4 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion, Explosion, and Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s0010508224010064","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Mathematical modeling is applied to study the electrothermal explosion conditions of a gasless system surrounded by a dielectric medium. It is shown how conductive heat exchange intensity and Joule heating power affect the formation of dimensionless temperature and concentration profiles, the integral depth of transformation, and the reaction front propagation velocity. The stages of ignition and reaction propagation are divided using a criterion that assumes a conversion depth of 0.99 at any point in the sample. The amount of product formed at the ignition stage is determined. It is demonstrated that a large transformation depth is achieved near critical conditions during ignition on the axis of the sample, thereby causing the displacement of the ignition zone from the axis to the surface of the sample.
期刊介绍:
Combustion, Explosion, and Shock Waves a peer reviewed journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The journal presents top-level studies in the physics and chemistry of combustion and detonation processes, structural and chemical transformation of matter in shock and detonation waves, and related phenomena. Each issue contains valuable information on initiation of detonation in condensed and gaseous phases, environmental consequences of combustion and explosion, engine and power unit combustion, production of new materials by shock and detonation waves, explosion welding, explosive compaction of powders, dynamic responses of materials and constructions, and hypervelocity impact.