A Geometric Representation

Nicholas Phat Nguyen
{"title":"A Geometric Representation","authors":"Nicholas Phat Nguyen","doi":"arxiv-2404.12661","DOIUrl":null,"url":null,"abstract":"This article provides a geometric representation for the well-known\nisomorphism between the special orthogonal group of an isotropic quadratic\nspace of dimension 3 and the group of projective transformations of a\nprojective line. This geometric representation depends on the theory of\ninversive transformations in dimension 1 as outlined in the 2021 article\nProjective Line Revisited by the same author. This geometric representation\nalso provides a new perspective on some classical properties of the projective\nline, such as the classical cross ratio.","PeriodicalId":501462,"journal":{"name":"arXiv - MATH - History and Overview","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - History and Overview","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.12661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article provides a geometric representation for the well-known isomorphism between the special orthogonal group of an isotropic quadratic space of dimension 3 and the group of projective transformations of a projective line. This geometric representation depends on the theory of inversive transformations in dimension 1 as outlined in the 2021 article Projective Line Revisited by the same author. This geometric representation also provides a new perspective on some classical properties of the projective line, such as the classical cross ratio.
几何表示法
本文为众所周知的各向同性四维空间的特殊正交群与投影线的投影变换群之间的同构关系提供了一个几何表示。这个几何表征依赖于同一作者在 2021 年发表的文章《投影线再认识》中概述的维 1 中的逆变换理论。这种几何表示法也为投影线的一些经典性质(如经典的交叉比)提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信