{"title":"Experimental and Numerical Study of Combustion of Rich Mixtures of Methanol and Hydrogen with Air","authors":"V. A. Bunev","doi":"10.1134/s0010508224010027","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The combustion of rich mixtures of methanol and hydrogen with air has been studied by experimental and numerical methods. It has been shown that the deviation from Le Chatelier’s principle for the rich flammability limits is due to two factors: flame inhibition by methanol in rich mixtures of hydrogen and the presence of superadiabatic temperatures in rich mixtures of methanol. It has been found that the effect of adding small amounts of hydrogen to rich methanol mixtures is the same as the effect of adding inert nitrogen and carbon dioxide. Numerical simulation has shown that the addition of small amounts of hydrogen to rich methanol mixtures has only a physical effect on the normal flame speed. The addition of H<sub>2</sub> affects the occurrence of superadiabatic temperatures in methanol flames in the same way as the addition of inert CO<sub>2</sub> and N<sub>2</sub>.</p>","PeriodicalId":10509,"journal":{"name":"Combustion, Explosion, and Shock Waves","volume":"123 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion, Explosion, and Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s0010508224010027","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The combustion of rich mixtures of methanol and hydrogen with air has been studied by experimental and numerical methods. It has been shown that the deviation from Le Chatelier’s principle for the rich flammability limits is due to two factors: flame inhibition by methanol in rich mixtures of hydrogen and the presence of superadiabatic temperatures in rich mixtures of methanol. It has been found that the effect of adding small amounts of hydrogen to rich methanol mixtures is the same as the effect of adding inert nitrogen and carbon dioxide. Numerical simulation has shown that the addition of small amounts of hydrogen to rich methanol mixtures has only a physical effect on the normal flame speed. The addition of H2 affects the occurrence of superadiabatic temperatures in methanol flames in the same way as the addition of inert CO2 and N2.
期刊介绍:
Combustion, Explosion, and Shock Waves a peer reviewed journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The journal presents top-level studies in the physics and chemistry of combustion and detonation processes, structural and chemical transformation of matter in shock and detonation waves, and related phenomena. Each issue contains valuable information on initiation of detonation in condensed and gaseous phases, environmental consequences of combustion and explosion, engine and power unit combustion, production of new materials by shock and detonation waves, explosion welding, explosive compaction of powders, dynamic responses of materials and constructions, and hypervelocity impact.