On multipliers into martingale $$SL^\infty $$ spaces for arbitrary filtrations

IF 1 3区 数学 Q1 MATHEMATICS
Anton Tselishchev
{"title":"On multipliers into martingale $$SL^\\infty $$ spaces for arbitrary filtrations","authors":"Anton Tselishchev","doi":"10.1007/s00209-024-03494-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the following problem: for a given bounded positive function <i>f</i> on a filtered probability space can we find another function (a multiplier) <i>m</i>, <span>\\(0\\le m\\le 1\\)</span>, such that the function <i>mf</i> is not “too small” but its square function is bounded? We explicitly show how to construct such multipliers for the usual martingale square function and for so-called conditional square function. Besides that, we show that for the usual square function more general statement can be obtained by application of a non-constructive abstract correction theorem by Kislyakov.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"40 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03494-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study the following problem: for a given bounded positive function f on a filtered probability space can we find another function (a multiplier) m, \(0\le m\le 1\), such that the function mf is not “too small” but its square function is bounded? We explicitly show how to construct such multipliers for the usual martingale square function and for so-called conditional square function. Besides that, we show that for the usual square function more general statement can be obtained by application of a non-constructive abstract correction theorem by Kislyakov.

论任意滤波的马廷格尔 $$SL^\infty$ 空间乘数
在本文中,我们将研究以下问题:对于滤波概率空间上的给定有界正函数 f,我们能否找到另一个函数(乘数)m,使得函数 mf 不是 "太小",而是其平方函数是有界的?我们明确地展示了如何为通常的马丁格尔平方函数和所谓的条件平方函数构造这样的乘数。此外,我们还证明,对于通常的平方函数,可以应用基斯利亚科夫(Kislyakov)的非构造性抽象修正定理,得到更一般的说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信