{"title":"ON GENERALISED LEGENDRE MATRICES INVOLVING ROOTS OF UNITY OVER FINITE FIELDS","authors":"NING-LIU WEI, YU-BO LI, HAI-LIANG WU","doi":"10.1017/s0004972724000303","DOIUrl":null,"url":null,"abstract":"Motivated by the work initiated by Chapman [‘Determinants of Legendre symbol matrices’, <jats:italic>Acta Arith.</jats:italic>115 (2004), 231–244], we investigate some arithmetical properties of generalised Legendre matrices over finite fields. For example, letting <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline1.png\" /> <jats:tex-math> $a_1,\\ldots ,a_{(q-1)/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be all the nonzero squares in the finite field <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline2.png\" /> <jats:tex-math> $\\mathbb {F}_q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> containing <jats:italic>q</jats:italic> elements with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline3.png\" /> <jats:tex-math> $2\\nmid q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we give the explicit value of the determinant <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline4.png\" /> <jats:tex-math> $D_{(q-1)/2}=\\det [(a_i+a_j)^{(q-3)/2}]_{1\\le i,j\\le (q-1)/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In particular, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline5.png\" /> <jats:tex-math> $q=p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a prime greater than <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline6.png\" /> <jats:tex-math> $3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_eqnu1.png\" /> <jats:tex-math> $$ \\begin{align*}\\bigg(\\frac{\\det D_{(p-1)/2}}{p}\\bigg)= \\begin{cases} 1 & \\mbox{if}\\ p\\equiv1\\pmod4,\\\\ (-1)^{(h(-p)+1)/2} & \\mbox{if}\\ p\\equiv 3\\pmod4\\ \\text{and}\\ p>3, \\end{cases}\\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline7.png\" /> <jats:tex-math> $(\\frac {\\cdot }{p})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Legendre symbol and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline8.png\" /> <jats:tex-math> $h(-p)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the class number of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline9.png\" /> <jats:tex-math> $\\mathbb {Q}(\\sqrt {-p})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"39 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000303","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by the work initiated by Chapman [‘Determinants of Legendre symbol matrices’, Acta Arith.115 (2004), 231–244], we investigate some arithmetical properties of generalised Legendre matrices over finite fields. For example, letting $a_1,\ldots ,a_{(q-1)/2}$ be all the nonzero squares in the finite field $\mathbb {F}_q$ containing q elements with $2\nmid q$ , we give the explicit value of the determinant $D_{(q-1)/2}=\det [(a_i+a_j)^{(q-3)/2}]_{1\le i,j\le (q-1)/2}$ . In particular, if $q=p$ is a prime greater than $3$ , then $$ \begin{align*}\bigg(\frac{\det D_{(p-1)/2}}{p}\bigg)= \begin{cases} 1 & \mbox{if}\ p\equiv1\pmod4,\\ (-1)^{(h(-p)+1)/2} & \mbox{if}\ p\equiv 3\pmod4\ \text{and}\ p>3, \end{cases}\end{align*} $$ where $(\frac {\cdot }{p})$ is the Legendre symbol and $h(-p)$ is the class number of $\mathbb {Q}(\sqrt {-p})$ .
期刊介绍:
Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way.
Published Bi-monthly
Published for the Australian Mathematical Society