ON GENERALISED LEGENDRE MATRICES INVOLVING ROOTS OF UNITY OVER FINITE FIELDS

IF 0.6 4区 数学 Q3 MATHEMATICS
NING-LIU WEI, YU-BO LI, HAI-LIANG WU
{"title":"ON GENERALISED LEGENDRE MATRICES INVOLVING ROOTS OF UNITY OVER FINITE FIELDS","authors":"NING-LIU WEI, YU-BO LI, HAI-LIANG WU","doi":"10.1017/s0004972724000303","DOIUrl":null,"url":null,"abstract":"Motivated by the work initiated by Chapman [‘Determinants of Legendre symbol matrices’, <jats:italic>Acta Arith.</jats:italic>115 (2004), 231–244], we investigate some arithmetical properties of generalised Legendre matrices over finite fields. For example, letting <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline1.png\" /> <jats:tex-math> $a_1,\\ldots ,a_{(q-1)/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be all the nonzero squares in the finite field <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline2.png\" /> <jats:tex-math> $\\mathbb {F}_q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> containing <jats:italic>q</jats:italic> elements with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline3.png\" /> <jats:tex-math> $2\\nmid q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we give the explicit value of the determinant <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline4.png\" /> <jats:tex-math> $D_{(q-1)/2}=\\det [(a_i+a_j)^{(q-3)/2}]_{1\\le i,j\\le (q-1)/2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In particular, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline5.png\" /> <jats:tex-math> $q=p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a prime greater than <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline6.png\" /> <jats:tex-math> $3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_eqnu1.png\" /> <jats:tex-math> $$ \\begin{align*}\\bigg(\\frac{\\det D_{(p-1)/2}}{p}\\bigg)= \\begin{cases} 1 &amp; \\mbox{if}\\ p\\equiv1\\pmod4,\\\\ (-1)^{(h(-p)+1)/2} &amp; \\mbox{if}\\ p\\equiv 3\\pmod4\\ \\text{and}\\ p&gt;3, \\end{cases}\\end{align*} $$ </jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline7.png\" /> <jats:tex-math> $(\\frac {\\cdot }{p})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the Legendre symbol and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline8.png\" /> <jats:tex-math> $h(-p)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the class number of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972724000303_inline9.png\" /> <jats:tex-math> $\\mathbb {Q}(\\sqrt {-p})$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"39 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000303","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the work initiated by Chapman [‘Determinants of Legendre symbol matrices’, Acta Arith.115 (2004), 231–244], we investigate some arithmetical properties of generalised Legendre matrices over finite fields. For example, letting $a_1,\ldots ,a_{(q-1)/2}$ be all the nonzero squares in the finite field $\mathbb {F}_q$ containing q elements with $2\nmid q$ , we give the explicit value of the determinant $D_{(q-1)/2}=\det [(a_i+a_j)^{(q-3)/2}]_{1\le i,j\le (q-1)/2}$ . In particular, if $q=p$ is a prime greater than $3$ , then $$ \begin{align*}\bigg(\frac{\det D_{(p-1)/2}}{p}\bigg)= \begin{cases} 1 & \mbox{if}\ p\equiv1\pmod4,\\ (-1)^{(h(-p)+1)/2} & \mbox{if}\ p\equiv 3\pmod4\ \text{and}\ p>3, \end{cases}\end{align*} $$ where $(\frac {\cdot }{p})$ is the Legendre symbol and $h(-p)$ is the class number of $\mathbb {Q}(\sqrt {-p})$ .
关于有限域上涉及同根的广义图例矩阵
受查普曼(Chapman)的研究成果['Legendre 符号矩阵的确定性',Acta Arith.115 (2004),231-244]的启发,我们研究了有限域上广义 Legendre 矩阵的一些算术性质。例如,假设 $a_1,\ldots ,a_{(q-1)/2}$ 是有限域 $\mathbb {F}_q$ 中包含 q 个元素且 2\nmid q$ 的所有非零方阵,我们给出了行列式 $D_{(q-1)/2}=\det [(a_i+a_j)^{(q-3)/2}]_{1\le i,j\le (q-1)/2}$ 的显式值。特别是,如果 $q=p$ 是一个大于 $3$ 的素数,那么 $$ \begin{align*}\bigg(\frac\{det D_{(p-1)/2}}{p}\bigg)= \begin{cases} 1 &;\(-1)^{(h(-p)+1)/2} & \mbox{if}\ p\equiv 3\pmod4\ \text{and}\ p>3, \end{cases}\end{align*}其中 $(\frac {\cdot }{p})$ 是 Legendre 符号,$h(-p)$ 是 $\mathbb {Q}(\sqrt {-p})$ 的类数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信