{"title":"ON MATRICES ARISING IN FINITE FIELD HYPERGEOMETRIC FUNCTIONS","authors":"SATOSHI KUMABE, HASAN SAAD","doi":"10.1017/s0004972724000261","DOIUrl":null,"url":null,"abstract":"Lehmer [‘On certain character matrices’, <jats:italic>Pacific J. Math.</jats:italic>6 (1956), 491–499, and ‘Power character matrices’, <jats:italic>Pacific J. Math.</jats:italic>10 (1960), 895–907] defines four classes of matrices constructed from roots of unity for which the characteristic polynomials and the <jats:italic>k</jats:italic>th powers can be determined explicitly. We study a class of matrices which arise naturally in transformation formulae of finite field hypergeometric functions and whose entries are roots of unity and zeroes. We determine the characteristic polynomial, eigenvalues, eigenvectors and <jats:italic>k</jats:italic>th powers of these matrices. The eigenvalues are natural families of products of Jacobi sums.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Lehmer [‘On certain character matrices’, Pacific J. Math.6 (1956), 491–499, and ‘Power character matrices’, Pacific J. Math.10 (1960), 895–907] defines four classes of matrices constructed from roots of unity for which the characteristic polynomials and the kth powers can be determined explicitly. We study a class of matrices which arise naturally in transformation formulae of finite field hypergeometric functions and whose entries are roots of unity and zeroes. We determine the characteristic polynomial, eigenvalues, eigenvectors and kth powers of these matrices. The eigenvalues are natural families of products of Jacobi sums.
雷默['论某些特征矩阵',《太平洋数学杂志》,6 (1956),491-499,以及'幂特征矩阵',《太平洋数学杂志》,10 (1960),895-907]定义了四类由统一根构造的矩阵,它们的特征多项式和第 k 次幂都可以明确确定。我们研究了一类在有限域超几何函数的变换公式中自然出现的矩阵,它们的条目是合一根和零。我们确定了这些矩阵的特征多项式、特征值、特征向量和 k 次方。特征值是雅可比和积的自然族。