ON MATRICES ARISING IN FINITE FIELD HYPERGEOMETRIC FUNCTIONS

IF 0.6 4区 数学 Q3 MATHEMATICS
SATOSHI KUMABE, HASAN SAAD
{"title":"ON MATRICES ARISING IN FINITE FIELD HYPERGEOMETRIC FUNCTIONS","authors":"SATOSHI KUMABE, HASAN SAAD","doi":"10.1017/s0004972724000261","DOIUrl":null,"url":null,"abstract":"Lehmer [‘On certain character matrices’, <jats:italic>Pacific J. Math.</jats:italic>6 (1956), 491–499, and ‘Power character matrices’, <jats:italic>Pacific J. Math.</jats:italic>10 (1960), 895–907] defines four classes of matrices constructed from roots of unity for which the characteristic polynomials and the <jats:italic>k</jats:italic>th powers can be determined explicitly. We study a class of matrices which arise naturally in transformation formulae of finite field hypergeometric functions and whose entries are roots of unity and zeroes. We determine the characteristic polynomial, eigenvalues, eigenvectors and <jats:italic>k</jats:italic>th powers of these matrices. The eigenvalues are natural families of products of Jacobi sums.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"48 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000261","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Lehmer [‘On certain character matrices’, Pacific J. Math.6 (1956), 491–499, and ‘Power character matrices’, Pacific J. Math.10 (1960), 895–907] defines four classes of matrices constructed from roots of unity for which the characteristic polynomials and the kth powers can be determined explicitly. We study a class of matrices which arise naturally in transformation formulae of finite field hypergeometric functions and whose entries are roots of unity and zeroes. We determine the characteristic polynomial, eigenvalues, eigenvectors and kth powers of these matrices. The eigenvalues are natural families of products of Jacobi sums.
关于有限域超几何函数中出现的矩阵
雷默['论某些特征矩阵',《太平洋数学杂志》,6 (1956),491-499,以及'幂特征矩阵',《太平洋数学杂志》,10 (1960),895-907]定义了四类由统一根构造的矩阵,它们的特征多项式和第 k 次幂都可以明确确定。我们研究了一类在有限域超几何函数的变换公式中自然出现的矩阵,它们的条目是合一根和零。我们确定了这些矩阵的特征多项式、特征值、特征向量和 k 次方。特征值是雅可比和积的自然族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信