Enumerating regular graph coverings whose covering transformation groups are $$\mathbb {Z}_p$$ -extensions of a cyclic group

Pub Date : 2024-04-21 DOI:10.1007/s10801-024-01309-y
Dong-Qi Wan, Jianbing Liu, Jin Ho Kwak, Jin-Xin Zhou
{"title":"Enumerating regular graph coverings whose covering transformation groups are $$\\mathbb {Z}_p$$ -extensions of a cyclic group","authors":"Dong-Qi Wan, Jianbing Liu, Jin Ho Kwak, Jin-Xin Zhou","doi":"10.1007/s10801-024-01309-y","DOIUrl":null,"url":null,"abstract":"<p>Enumerating the isomorphism or equivalence classes of several types of graph coverings is one of the central research topics in enumerative topological graph theory. In 1988, Hofmeister enumerated the double covers of a graph, and this work was extended to <i>n</i>-fold coverings of a graph by Kwak and Lee. For <i>regular</i> graph coverings, Kwak, Chun and Lee enumerated the isomorphism classes of graph coverings when the covering transformation group is a finite abelian or a dihedral group in Kwak et al. (SIAM J Discrete Math 11:273–285, 1998). In 2018, the isomorphism classes of graph coverings are enumerated when the covering transformation groups are <span>\\(\\mathbb {Z}_2\\)</span>-extensions of a cyclic group. As a continuation of this work, we enumerate the isomorphism classes of coverings of a graph when the covering transformation groups are <span>\\(\\mathbb {Z}_p\\)</span>-extensions of a cyclic group for an odd prime integer <i>p</i>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01309-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Enumerating the isomorphism or equivalence classes of several types of graph coverings is one of the central research topics in enumerative topological graph theory. In 1988, Hofmeister enumerated the double covers of a graph, and this work was extended to n-fold coverings of a graph by Kwak and Lee. For regular graph coverings, Kwak, Chun and Lee enumerated the isomorphism classes of graph coverings when the covering transformation group is a finite abelian or a dihedral group in Kwak et al. (SIAM J Discrete Math 11:273–285, 1998). In 2018, the isomorphism classes of graph coverings are enumerated when the covering transformation groups are \(\mathbb {Z}_2\)-extensions of a cyclic group. As a continuation of this work, we enumerate the isomorphism classes of coverings of a graph when the covering transformation groups are \(\mathbb {Z}_p\)-extensions of a cyclic group for an odd prime integer p.

分享
查看原文
枚举其覆盖变换群是循环群的$\mathbb {Z}_p$$ 扩展的正则图覆盖层
枚举几类图覆盖的同构或等价类是枚举拓扑图理论的核心研究课题之一。1988 年,霍夫迈斯特(Hofmeister)枚举了图的双重覆盖,郭(Kwak)和李(Lee)将这项工作扩展到图的 n 重覆盖。对于规则图覆盖,Kwak、Chun 和 Lee 在 Kwak et al. (SIAM J Discrete Math 11:273-285, 1998) 中列举了当覆盖变换群是有限无边群或二面群时图覆盖的同构类。2018年,当覆盖变换群是一个循环群的\(\mathbb {Z}_2\)-扩展时,图覆盖的同构类被列举出来。作为这项工作的延续,我们列举了当覆盖变换群是奇素数整数p的循环群的\(\mathbb {Z}_p\)-扩展时,图覆盖的同构类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信