Improvement in the conservatism of the time domain passivity approach in delayed position-position teleoperation system

IF 2.1 Q3 ROBOTICS
Mohsen Salehi, Ali-Akbar Ahmadi
{"title":"Improvement in the conservatism of the time domain passivity approach in delayed position-position teleoperation system","authors":"Mohsen Salehi, Ali-Akbar Ahmadi","doi":"10.1007/s41315-024-00336-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, using time domain passivity approach and energy storage capability of the coupling controllers in a bilateral teleoperation system as a storage element, an innovative control method for position-position architecture is proposed which reduces unnecessary conservatism caused by the conventional direction dependent energy monitoring. An ideal value for the energy storage element is obtained and it is shown that the passivity can be guaranteed by restricting the system output energy to some desired values based on the obtained ideal one. Simulation results show the less energy dissipation and improved position tracking in comparison with the conventional approaches.</p>","PeriodicalId":44563,"journal":{"name":"International Journal of Intelligent Robotics and Applications","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Robotics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41315-024-00336-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, using time domain passivity approach and energy storage capability of the coupling controllers in a bilateral teleoperation system as a storage element, an innovative control method for position-position architecture is proposed which reduces unnecessary conservatism caused by the conventional direction dependent energy monitoring. An ideal value for the energy storage element is obtained and it is shown that the passivity can be guaranteed by restricting the system output energy to some desired values based on the obtained ideal one. Simulation results show the less energy dissipation and improved position tracking in comparison with the conventional approaches.

Abstract Image

改进延迟位置-位置远程操纵系统中时域被动方法的保守性
本文利用时域钝化方法和双边远程操纵系统中耦合控制器的储能能力作为储能元件,提出了一种创新的位置-位置结构控制方法,该方法减少了传统的依赖方向的能量监测所造成的不必要的保守性。该方法获得了储能元件的理想值,并证明可以根据获得的理想值将系统输出能量限制在某些期望值内,从而保证系统的被动性。仿真结果表明,与传统方法相比,能量耗散更少,位置跟踪效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.90%
发文量
50
期刊介绍: The International Journal of Intelligent Robotics and Applications (IJIRA) fosters the dissemination of new discoveries and novel technologies that advance developments in robotics and their broad applications. This journal provides a publication and communication platform for all robotics topics, from the theoretical fundamentals and technological advances to various applications including manufacturing, space vehicles, biomedical systems and automobiles, data-storage devices, healthcare systems, home appliances, and intelligent highways. IJIRA welcomes contributions from researchers, professionals and industrial practitioners. It publishes original, high-quality and previously unpublished research papers, brief reports, and critical reviews. Specific areas of interest include, but are not limited to:Advanced actuators and sensorsCollective and social robots Computing, communication and controlDesign, modeling and prototypingHuman and robot interactionMachine learning and intelligenceMobile robots and intelligent autonomous systemsMulti-sensor fusion and perceptionPlanning, navigation and localizationRobot intelligence, learning and linguisticsRobotic vision, recognition and reconstructionBio-mechatronics and roboticsCloud and Swarm roboticsCognitive and neuro roboticsExploration and security roboticsHealthcare, medical and assistive roboticsRobotics for intelligent manufacturingService, social and entertainment roboticsSpace and underwater robotsNovel and emerging applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信