Graver bases of shifted numerical semigroups with 3 generators

IF 0.5 3区 数学 Q3 MATHEMATICS
James Howard, Christopher O’Neill
{"title":"Graver bases of shifted numerical semigroups with 3 generators","authors":"James Howard, Christopher O’Neill","doi":"10.1142/s0219498825502275","DOIUrl":null,"url":null,"abstract":"<p>A numerical semigroup <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>M</mi></math></span><span></span> is a subset of the non-negative integers that is closed under addition. A factorization of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>∈</mo><mi>M</mi></math></span><span></span> is an expression of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> as a sum of generators of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>M</mi></math></span><span></span>, and the Graver basis of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>M</mi></math></span><span></span> is a collection <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Gr</mtext></mstyle><mo stretchy=\"false\">(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> of trades between the generators of <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>M</mi></math></span><span></span> that allows for efficient movement between factorizations. Given positive integers <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span><span></span>, consider the family <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo stretchy=\"false\">〈</mo><mi>t</mi><mo stretchy=\"false\">+</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><mi>t</mi><mo stretchy=\"false\">+</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span><span></span> of “shifted” numerical semigroups whose generators are obtained by translating <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span><span></span> by an integer parameter <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>. In this paper, we characterize the Graver basis <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Gr</mtext></mstyle><mo stretchy=\"false\">(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> of <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span><span></span> for sufficiently large <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span> in the case <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi><mo>=</mo><mn>3</mn></math></span><span></span>, in the form of a recursive construction of <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Gr</mtext></mstyle><mo stretchy=\"false\">(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> from that of smaller values of <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>. As a consequence of our result, the number of trades in <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Gr</mtext></mstyle><mo stretchy=\"false\">(</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>t</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span>, when viewed as a function of <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>, is eventually quasilinear. We also obtain a sharp lower bound on the start of quasilinear behavior.</p>","PeriodicalId":54888,"journal":{"name":"Journal of Algebra and Its Applications","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219498825502275","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A numerical semigroup M is a subset of the non-negative integers that is closed under addition. A factorization of nM is an expression of n as a sum of generators of M, and the Graver basis of M is a collection Gr(Mt) of trades between the generators of M that allows for efficient movement between factorizations. Given positive integers r1,,rk, consider the family Mt=t+r1,,t+rk of “shifted” numerical semigroups whose generators are obtained by translating r1,,rk by an integer parameter t. In this paper, we characterize the Graver basis Gr(Mt) of Mt for sufficiently large t in the case k=3, in the form of a recursive construction of Gr(Mt) from that of smaller values of t. As a consequence of our result, the number of trades in Gr(Mt), when viewed as a function of t, is eventually quasilinear. We also obtain a sharp lower bound on the start of quasilinear behavior.

有 3 个发电机的移位数字半群的格拉弗基
数字半群 M 是非负整数的一个子集,在加法运算下是封闭的。n∈M 的因式分解是 n 作为 M 的生成器之和的表达式,而 M 的格雷弗基是 M 的生成器之间的交易集合 Gr(Mt),它允许因式分解之间的有效移动。给定正整数 r1,...,rk,考虑 "移位 "数字半群 Mt 系列=〈t+r1,...,t+rk,其生成器通过将 r1,...,rk平移一个整数参数 t 而获得。在本文中,我们从较小 t 值的 Gr(Mt)出发,以递归构造的形式,描述了在 k=3 的情况下,足够大 t 的 Mt 的格雷弗基 Gr(Mt)。我们还得到了准线性行为开始时的一个尖锐下限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
226
审稿时长
4-8 weeks
期刊介绍: The Journal of Algebra and Its Applications will publish papers both on theoretical and on applied aspects of Algebra. There is special interest in papers that point out innovative links between areas of Algebra and fields of application. As the field of Algebra continues to experience tremendous growth and diversification, we intend to provide the mathematical community with a central source for information on both the theoretical and the applied aspects of the discipline. While the journal will be primarily devoted to the publication of original research, extraordinary expository articles that encourage communication between algebraists and experts on areas of application as well as those presenting the state of the art on a given algebraic sub-discipline will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信