Curvature Sets Over Persistence Diagrams

Pub Date : 2024-04-22 DOI:10.1007/s00454-024-00634-0
Mario Gómez, Facundo Mémoli
{"title":"Curvature Sets Over Persistence Diagrams","authors":"Mario Gómez, Facundo Mémoli","doi":"10.1007/s00454-024-00634-0","DOIUrl":null,"url":null,"abstract":"<p>We study a family of invariants of compact metric spaces that combines the Curvature Sets defined by Gromov in the 1980 s with Vietoris–Rips Persistent Homology. For given integers <span>\\(k\\ge 0\\)</span> and <span>\\(n\\ge 1\\)</span> we consider the dimension <i>k</i> Vietoris–Rips persistence diagrams of <i>all</i> subsets of a given metric space with cardinality at most <i>n</i>. We call these invariants <i>persistence sets</i> and denote them as <span>\\({\\textbf{D}}_{n,k}^{\\textrm{VR}}\\)</span>. We first point out that this family encompasses the usual Vietoris–Rips diagrams. We then establish that (1) for certain range of values of the parameters <i>n</i> and <i>k</i>, computing these invariants is significantly more efficient than computing the usual Vietoris–Rips persistence diagrams, (2) these invariants have very good discriminating power and, in many cases, capture information that is imperceptible through standard Vietoris–Rips persistence diagrams, and (3) they enjoy stability properties analogous to those of the usual Vietoris–Rips persistence diagrams. We precisely characterize some of them in the case of spheres and surfaces with constant curvature using a generalization of Ptolemy’s inequality. We also identify a rich family of metric graphs for which <span>\\({\\textbf{D}}_{4,1}^{\\textrm{VR}}\\)</span> fully recovers their homotopy type by studying split-metric decompositions. Along the way we prove some useful properties of Vietoris–Rips persistence diagrams using Mayer–Vietoris sequences. These yield a geometric algorithm for computing the Vietoris–Rips persistence diagram of a space <i>X</i> with cardinality <span>\\(2k+2\\)</span> with quadratic time complexity as opposed to the much higher cost incurred by the usual algebraic algorithms relying on matrix reduction.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00634-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study a family of invariants of compact metric spaces that combines the Curvature Sets defined by Gromov in the 1980 s with Vietoris–Rips Persistent Homology. For given integers \(k\ge 0\) and \(n\ge 1\) we consider the dimension k Vietoris–Rips persistence diagrams of all subsets of a given metric space with cardinality at most n. We call these invariants persistence sets and denote them as \({\textbf{D}}_{n,k}^{\textrm{VR}}\). We first point out that this family encompasses the usual Vietoris–Rips diagrams. We then establish that (1) for certain range of values of the parameters n and k, computing these invariants is significantly more efficient than computing the usual Vietoris–Rips persistence diagrams, (2) these invariants have very good discriminating power and, in many cases, capture information that is imperceptible through standard Vietoris–Rips persistence diagrams, and (3) they enjoy stability properties analogous to those of the usual Vietoris–Rips persistence diagrams. We precisely characterize some of them in the case of spheres and surfaces with constant curvature using a generalization of Ptolemy’s inequality. We also identify a rich family of metric graphs for which \({\textbf{D}}_{4,1}^{\textrm{VR}}\) fully recovers their homotopy type by studying split-metric decompositions. Along the way we prove some useful properties of Vietoris–Rips persistence diagrams using Mayer–Vietoris sequences. These yield a geometric algorithm for computing the Vietoris–Rips persistence diagram of a space X with cardinality \(2k+2\) with quadratic time complexity as opposed to the much higher cost incurred by the usual algebraic algorithms relying on matrix reduction.

Abstract Image

分享
查看原文
持续图上的曲率集
我们研究了紧凑度量空间的不变量族,它结合了格罗莫夫(Gromov)在 20 世纪 80 年代定义的曲率集(Curvature Sets)和维特瑞斯-瑞普斯持久同调(Vietoris-Rips Persistent Homology)。对于给定整数\(k\ge 0\) 和\(n\ge 1\),我们考虑给定度量空间的所有子集的维数k维维特瑞斯-瑞普斯持久图,其心性最多为n。我们称这些不变式为持久集,并将它们表示为\({\textbf{D}}_{n,k}^{textrm{VR}}\)。我们首先指出,这个族包含了通常的 Vietoris-Rips 图。然后,我们确定:(1)在参数 n 和 k 的特定取值范围内,计算这些不变式的效率明显高于计算通常的 Vietoris-Rips 持久图;(2)这些不变式具有很好的判别能力,在许多情况下,它们捕捉到了标准 Vietoris-Rips 持久图无法感知的信息;(3)它们具有与通常的 Vietoris-Rips 持久图类似的稳定性。我们利用托勒密不等式的一般化,精确地描述了其中一些恒定曲率球面和曲面的特征。我们还发现了一个丰富的度量图家族,通过研究分裂度量分解,这些度量图的\({\textbf{D}}_{4,1}^{textrm{VR}}\) 完全恢复了它们的同调类型。在此过程中,我们利用迈尔-维托里斯序列证明了维托里斯-瑞普斯持久图的一些有用性质。这些都产生了一种几何算法,可以计算心率为 \(2k+2\)的空间 X 的维托里斯-瑞普斯持久图,其时间复杂度为二次方,而通常的代数算法依赖于矩阵还原会产生更高的代价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信