Can you take Komjath's inaccessible away?

IF 0.6 2区 数学 Q2 LOGIC
Hossein Lamei Ramandi , Stevo Todorcevic
{"title":"Can you take Komjath's inaccessible away?","authors":"Hossein Lamei Ramandi ,&nbsp;Stevo Todorcevic","doi":"10.1016/j.apal.2024.103452","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we aim to compare Kurepa trees and Aronszajn trees. Moreover, we analyze the effect of large cardinal assumptions on this comparison. Using the method of walks on ordinals, we will show it is consistent with ZFC that there is a Kurepa tree and every Kurepa tree contains an Aronszajn subtree, if there is an inaccessible cardinal. This is stronger than Komjath's theorem in <span>[5]</span>, where he proves the same consistency from two inaccessible cardinals. Moreover, we prove it is consistent with ZFC that there is a Kurepa tree <em>T</em> such that if <span><math><mi>U</mi><mo>⊂</mo><mi>T</mi></math></span> is a Kurepa tree with the inherited order from <em>T</em>, then <em>U</em> has an Aronszajn subtree. This theorem uses no large cardinal assumption. Our last theorem immediately implies the following: If <span><math><msub><mrow><mi>MA</mi></mrow><mrow><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub></math></span> holds and <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> is not a Mahlo cardinal in <figure><img></figure> then there is a Kurepa tree with the property that every Kurepa subset has an Aronszajn subtree. Our work entails proving a new lemma about Todorcevic's <em>ρ</em> function which might be useful in other contexts.</p></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"175 7","pages":"Article 103452"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168007224000502/pdfft?md5=1993a5c4769b9c98665f24c8f3058ad9&pid=1-s2.0-S0168007224000502-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224000502","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we aim to compare Kurepa trees and Aronszajn trees. Moreover, we analyze the effect of large cardinal assumptions on this comparison. Using the method of walks on ordinals, we will show it is consistent with ZFC that there is a Kurepa tree and every Kurepa tree contains an Aronszajn subtree, if there is an inaccessible cardinal. This is stronger than Komjath's theorem in [5], where he proves the same consistency from two inaccessible cardinals. Moreover, we prove it is consistent with ZFC that there is a Kurepa tree T such that if UT is a Kurepa tree with the inherited order from T, then U has an Aronszajn subtree. This theorem uses no large cardinal assumption. Our last theorem immediately implies the following: If MAω2 holds and ω2 is not a Mahlo cardinal in

then there is a Kurepa tree with the property that every Kurepa subset has an Aronszajn subtree. Our work entails proving a new lemma about Todorcevic's ρ function which might be useful in other contexts.

你能把科姆亚特无法进入的地方带走吗?
本文旨在比较 Kurepa 树和 Aronszajn 树。此外,我们还分析了大贲门假设对这种比较的影响。我们将使用在序数上行走的方法来证明,如果存在一个无法访问的心数,则存在一棵库雷帕树,并且每棵库雷帕树都包含一棵阿伦扎因子树,这与 ZFC 是一致的。这比 Komjath 在 [5] 中的定理更有力,后者从两个不可访问的红心证明了同样的一致性。此外,我们还证明了与 ZFC 一致的是,存在一棵库雷帕树 T,如果 U⊂T 是一棵继承了 T 的阶的库雷帕树,那么 U 有一棵 Aronszajn 子树。本定理不使用大底假设。我们的最后一个定理立即意味着以下内容:如果 MAω2 成立,且 ω2 不是马赫罗红心,那么就有一棵 Kurepa 树,其性质是每个 Kurepa 子集都有一棵阿伦扎恩子树。我们的工作需要证明一个关于 Todorcevic 的 ρ 函数的新lemma,它可能在其他情况下有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信