Exponential convergence to steady-states for trajectories of a damped dynamical system modeling adhesive strings

Giuseppe Maria Coclite, Nicola De Nitti, Francesco Maddalena, Gianluca Orlando, Enrique Zuazua
{"title":"Exponential convergence to steady-states for trajectories of a damped dynamical system modeling adhesive strings","authors":"Giuseppe Maria Coclite, Nicola De Nitti, Francesco Maddalena, Gianluca Orlando, Enrique Zuazua","doi":"10.1142/s021820252450026x","DOIUrl":null,"url":null,"abstract":"<p>We study the global well-posedness and asymptotic behavior for a semilinear damped wave equation with Neumann boundary conditions, modeling a one-dimensional linearly elastic body interacting with a rigid substrate through an adhesive material. The key feature of of the problem is that the interplay between the nonlinear force and the boundary conditions allows for a continuous set of equilibrium points. We prove an exponential rate of convergence for the solution towards a (uniquely determined) equilibrium point.</p>","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021820252450026x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the global well-posedness and asymptotic behavior for a semilinear damped wave equation with Neumann boundary conditions, modeling a one-dimensional linearly elastic body interacting with a rigid substrate through an adhesive material. The key feature of of the problem is that the interplay between the nonlinear force and the boundary conditions allows for a continuous set of equilibrium points. We prove an exponential rate of convergence for the solution towards a (uniquely determined) equilibrium point.

以粘合剂弦为模型的阻尼动力系统轨迹向稳态的指数收敛
我们研究了具有诺伊曼边界条件的半线性阻尼波方程的全局拟合和渐近行为,该方程模拟了一个通过粘合材料与刚性基体相互作用的一维线性弹性体。该问题的主要特点是,非线性力和边界条件之间的相互作用允许存在一组连续的平衡点。我们证明了向一个(唯一确定的)平衡点求解的指数收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信