Changting Shi, Dongdong Tao, Haibo Liu, Jinlong Bai
{"title":"A Rapid Planning Repair Method of Three-Dimensional Path for AUV","authors":"Changting Shi, Dongdong Tao, Haibo Liu, Jinlong Bai","doi":"10.1007/s11036-024-02307-x","DOIUrl":null,"url":null,"abstract":"<p>In response to the local path planning issue encountered by Autonomous Underwater Vehicle (AUV) during autonomous navigation when facing sudden threats or obstacles, a rapid path planning repair solution based on the IRRT*-VSRP method is proposed in this paper. This method combines an enhanced RRT* algorithm with a threat-based variable step-size receding horizon predictive strategy, effectively reducing the search space in three-dimensional environments. Its notable features include rapid local path repair and generation, thereby improving the success rate and efficiency of planning. Simulation results demonstrate that the IRRT*-VSRP algorithm significantly reduces the time required for planning repair and enhances the directionality of tree expansion, rendering it suitable for complex underwater three-dimensional environments and enhancing the efficiency of AUV planning repair.</p>","PeriodicalId":501103,"journal":{"name":"Mobile Networks and Applications","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile Networks and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11036-024-02307-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the local path planning issue encountered by Autonomous Underwater Vehicle (AUV) during autonomous navigation when facing sudden threats or obstacles, a rapid path planning repair solution based on the IRRT*-VSRP method is proposed in this paper. This method combines an enhanced RRT* algorithm with a threat-based variable step-size receding horizon predictive strategy, effectively reducing the search space in three-dimensional environments. Its notable features include rapid local path repair and generation, thereby improving the success rate and efficiency of planning. Simulation results demonstrate that the IRRT*-VSRP algorithm significantly reduces the time required for planning repair and enhances the directionality of tree expansion, rendering it suitable for complex underwater three-dimensional environments and enhancing the efficiency of AUV planning repair.