Discrete Degree of Symmetry of Manifolds

Pub Date : 2024-04-19 DOI:10.1007/s00031-024-09858-z
Ignasi Mundet i Riera
{"title":"Discrete Degree of Symmetry of Manifolds","authors":"Ignasi Mundet i Riera","doi":"10.1007/s00031-024-09858-z","DOIUrl":null,"url":null,"abstract":"<p>We define the discrete degree of symmetry disc-sym(<i>X</i>) of a closed <i>n</i>-manifold <i>X</i> as the biggest <span>\\(m\\ge 0\\)</span> such that <i>X</i> supports an effective action of <span>\\((\\mathbb {Z}/r)^m\\)</span> for arbitrarily big values of <i>r</i>. We prove that if <i>X</i> is connected then disc-sym<span>\\((X)\\le 3n/2\\)</span>. We propose the question of whether for every closed connected <i>n</i>-manifold <i>X</i> the inequality disc-sym<span>\\((X)\\le n\\)</span> holds true, and whether the only closed connected <i>n</i>-manifold <i>X</i> for which disc-sym(X)<span>\\(=n\\)</span> is the torus <span>\\(T^n\\)</span>. We prove partial results providing evidence for an affirmative answer to this question.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00031-024-09858-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We define the discrete degree of symmetry disc-sym(X) of a closed n-manifold X as the biggest \(m\ge 0\) such that X supports an effective action of \((\mathbb {Z}/r)^m\) for arbitrarily big values of r. We prove that if X is connected then disc-sym\((X)\le 3n/2\). We propose the question of whether for every closed connected n-manifold X the inequality disc-sym\((X)\le n\) holds true, and whether the only closed connected n-manifold X for which disc-sym(X)\(=n\) is the torus \(T^n\). We prove partial results providing evidence for an affirmative answer to this question.

分享
查看原文
流形的离散对称度
我们将一个封闭的n-manifold X的离散对称度disc-sym(X)定义为最大的\(m\ge 0\) 使得X支持任意大的r值的\((\mathbb {Z}/r)^m\) 的有效作用。我们提出了这样一个问题:对于每一个封闭连通的n-manifold X,不等式disc-sym/((X)\le n\) 是否成立;对于封闭连通的n-manifold X,disc-sym(X)\(=n\)是否是唯一的环\(T^n\)。我们证明了部分结果,为这个问题的肯定答案提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信