{"title":"Edge-Disjoint Hamiltonian Cycles in Balanced Hypercubes with Applications to Fault-Tolerant Data Broadcasting","authors":"Shuai Liu, Yan Wang, Jianxi Fan, Baolei Cheng","doi":"10.1142/s0129054124500047","DOIUrl":null,"url":null,"abstract":"<p>The existence of multiple edge-disjoint Hamiltonian cycles (EDHCs for short) is a desirable property of interconnection networks. These parallel cycles can provide an advantage for algorithms that require a ring structure. Additionally, EDHCs can enhance all-to-all data broadcasting and edge fault tolerance in network communications. In this paper, we investigate the construction of EDHCs in the balanced hypercube, which is a variant of the hypercube with many attractive properties, such as strong connectivity, regularity, and symmetry. In particular, each processor in the balanced hypercube has a backup processor that shares the common neighbors, enabling fault tolerance and efficient system reconfiguration. In 2019, Lü <i>et al.</i> provided an algorithm to construct two EDHCs in an <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span>-dimensional balanced hypercube <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> for <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>2</mn></math></span><span></span>. We further study this topic and give some construction schemes to construct <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mn>2</mn></mrow><mrow><mo stretchy=\"false\">⌊</mo><msub><mrow><mo>log</mo></mrow><mrow><mn>2</mn></mrow></msub><mi>n</mi><mo stretchy=\"false\">⌋</mo></mrow></msup></math></span><span></span> EDHCs in <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> for <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>2</mn></math></span><span></span>. Since <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> is <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mi>n</mi></math></span><span></span>-regular, our result is optimal for <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup></math></span><span></span> (<span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>r</mi><mo>≥</mo><mn>1</mn></math></span><span></span>). In addition, we simulate the fault-tolerant data broadcasting through these parallel cycles as transmission channels.</p>","PeriodicalId":50323,"journal":{"name":"International Journal of Foundations of Computer Science","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Foundations of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/s0129054124500047","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The existence of multiple edge-disjoint Hamiltonian cycles (EDHCs for short) is a desirable property of interconnection networks. These parallel cycles can provide an advantage for algorithms that require a ring structure. Additionally, EDHCs can enhance all-to-all data broadcasting and edge fault tolerance in network communications. In this paper, we investigate the construction of EDHCs in the balanced hypercube, which is a variant of the hypercube with many attractive properties, such as strong connectivity, regularity, and symmetry. In particular, each processor in the balanced hypercube has a backup processor that shares the common neighbors, enabling fault tolerance and efficient system reconfiguration. In 2019, Lü et al. provided an algorithm to construct two EDHCs in an -dimensional balanced hypercube for . We further study this topic and give some construction schemes to construct EDHCs in for . Since is -regular, our result is optimal for (). In addition, we simulate the fault-tolerant data broadcasting through these parallel cycles as transmission channels.
期刊介绍:
The International Journal of Foundations of Computer Science is a bimonthly journal that publishes articles which contribute new theoretical results in all areas of the foundations of computer science. The theoretical and mathematical aspects covered include:
- Algebraic theory of computing and formal systems
- Algorithm and system implementation issues
- Approximation, probabilistic, and randomized algorithms
- Automata and formal languages
- Automated deduction
- Combinatorics and graph theory
- Complexity theory
- Computational biology and bioinformatics
- Cryptography
- Database theory
- Data structures
- Design and analysis of algorithms
- DNA computing
- Foundations of computer security
- Foundations of high-performance computing