Macroscopic limit of a Fokker-Planck model of swarming rigid bodies

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Pierre Degond, Amic Frouvelle
{"title":"Macroscopic limit of a Fokker-Planck model of swarming rigid bodies","authors":"Pierre Degond, Amic Frouvelle","doi":"10.1017/s0956792524000111","DOIUrl":null,"url":null,"abstract":"We consider self-propelled rigid bodies interacting through local body-attitude alignment modelled by stochastic differential equations. We derive a hydrodynamic model of this system at large spatio-temporal scales and particle numbers in any dimension <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792524000111_inline1.png\" /> <jats:tex-math> $n \\geq 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This goal was already achieved in dimension <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792524000111_inline2.png\" /> <jats:tex-math> $n=3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> or in any dimension <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0956792524000111_inline3.png\" /> <jats:tex-math> $n \\geq 3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for a different system involving jump processes. However, the present work corresponds to huge conceptual and technical gaps compared with earlier ones. The key difficulty is to determine an auxiliary but essential object, the generalised collision invariant. We achieve this aim by using the geometrical structure of the rotation group, namely its maximal torus, Cartan subalgebra and Weyl group as well as other concepts of representation theory and Weyl’s integration formula. The resulting hydrodynamic model appears as a hyperbolic system whose coefficients depend on the generalised collision invariant.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792524000111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider self-propelled rigid bodies interacting through local body-attitude alignment modelled by stochastic differential equations. We derive a hydrodynamic model of this system at large spatio-temporal scales and particle numbers in any dimension $n \geq 3$ . This goal was already achieved in dimension $n=3$ or in any dimension $n \geq 3$ for a different system involving jump processes. However, the present work corresponds to huge conceptual and technical gaps compared with earlier ones. The key difficulty is to determine an auxiliary but essential object, the generalised collision invariant. We achieve this aim by using the geometrical structure of the rotation group, namely its maximal torus, Cartan subalgebra and Weyl group as well as other concepts of representation theory and Weyl’s integration formula. The resulting hydrodynamic model appears as a hyperbolic system whose coefficients depend on the generalised collision invariant.
蜂拥刚体的福克-普朗克模型的宏观极限
我们考虑的是通过随机微分方程模拟的局部身体-姿态排列相互作用的自推进刚体。我们推导了该系统在任意维度 $n \geq 3$ 的大时空尺度和粒子数下的流体力学模型。这一目标已经在维数 $n=3$ 或涉及跃迁过程的不同系统的任意维数 $n \geq 3$ 中实现。然而,与先前的工作相比,目前的工作在概念和技术上存在巨大差距。关键的困难在于确定一个辅助但重要的对象--广义碰撞不变式。我们通过使用旋转群的几何结构,即其最大环、卡坦子代数和韦尔群,以及表示论和韦尔积分公式的其他概念来实现这一目标。由此产生的流体力学模型是一个双曲系统,其系数取决于广义碰撞不变式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信