Point-wise time-space estimates for a class of oscillatory integrals and their applications

JinMyong Kim, JinMyong An
{"title":"Point-wise time-space estimates for a class of oscillatory integrals and their applications","authors":"JinMyong Kim, JinMyong An","doi":"10.1007/s13226-024-00589-1","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the point-wise time-space estimates for a class of oscillatory integrals given by <span>\\(\\int _{\\mathbb R^{n} }e^{i&lt;x,\\; \\xi &gt;\\pm itP^{\\frac{1}{2} } (\\xi )} P^{-\\frac{\\alpha }{2} } (\\xi )d\\xi \\)</span>, where <i>P</i> is a real non-degenerate elliptic polynomial of order <span>\\(m\\ge 4\\)</span> on <span>\\(\\mathbb R^{n} \\)</span>. These estimates are applied to obtain time-space integrability estimates with regularity for solutions to higher order wave-type equations.</p>","PeriodicalId":501427,"journal":{"name":"Indian Journal of Pure and Applied Mathematics","volume":"222 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13226-024-00589-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the point-wise time-space estimates for a class of oscillatory integrals given by \(\int _{\mathbb R^{n} }e^{i<x,\; \xi >\pm itP^{\frac{1}{2} } (\xi )} P^{-\frac{\alpha }{2} } (\xi )d\xi \), where P is a real non-degenerate elliptic polynomial of order \(m\ge 4\) on \(\mathbb R^{n} \). These estimates are applied to obtain time-space integrability estimates with regularity for solutions to higher order wave-type equations.

一类振荡积分的点时空估计及其应用
本文研究了一类由 \(\int _{\mathbb R^{n} }e^{i<x,\; \xi >\pm itP^{frac{1}{2} 给出的振荡积分的点向时空估计。}e^{i<x,\; \xi >\pm itP^{\frac{1}{2}}(\xi )} P^{-\frac\{alpha }{2}}(\xi )d\xi \),其中 P 是 \(\mathbb R^{n} \)上阶为 \(m\ge 4\) 的实非退化椭圆多项式。应用这些估计值可以得到高阶波型方程解的时空可整性估计值,并具有正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信