Relaxations and cutting planes for linear programs with complementarity constraints

IF 1.8 3区 数学 Q1 Mathematics
Alberto Del Pia, Jeff Linderoth, Haoran Zhu
{"title":"Relaxations and cutting planes for linear programs with complementarity constraints","authors":"Alberto Del Pia, Jeff Linderoth, Haoran Zhu","doi":"10.1007/s10898-024-01397-x","DOIUrl":null,"url":null,"abstract":"<p>We study relaxations for linear programs with complementarity constraints, especially instances whose complementary pairs of variables are not independent. Our formulation is based on identifying vertex covers of the conflict graph of the instance and contains the extended formulation obtained from the ERLT introduced by Nguyen, Richard, and Tawarmalani as a special case. We demonstrate how to obtain strong cutting planes for our formulation from both the stable set polytope and the boolean quadric polytope associated with a complete bipartite graph. Through an extensive computational study for three types of practical problems, we assess the performance of our proposed linear relaxation and new cutting-planes in terms of the optimality gap closed.</p>","PeriodicalId":15961,"journal":{"name":"Journal of Global Optimization","volume":"242 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Global Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01397-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We study relaxations for linear programs with complementarity constraints, especially instances whose complementary pairs of variables are not independent. Our formulation is based on identifying vertex covers of the conflict graph of the instance and contains the extended formulation obtained from the ERLT introduced by Nguyen, Richard, and Tawarmalani as a special case. We demonstrate how to obtain strong cutting planes for our formulation from both the stable set polytope and the boolean quadric polytope associated with a complete bipartite graph. Through an extensive computational study for three types of practical problems, we assess the performance of our proposed linear relaxation and new cutting-planes in terms of the optimality gap closed.

Abstract Image

有互补约束的线性程序的松弛和切割平面
我们研究了具有互补性约束的线性程序的松弛问题,尤其是变量互补对不独立的实例。我们的公式基于识别实例冲突图的顶点盖,并将 Nguyen、Richard 和 Tawarmalani 引入的 ERLT 扩展公式作为特例。我们演示了如何从与完整双方形图相关联的稳定集合多面体和布尔二次多面体中为我们的公式获取强切割平面。通过对三类实际问题进行广泛的计算研究,我们评估了我们提出的线性松弛和新切割平面的性能,即关闭的最优性差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Global Optimization
Journal of Global Optimization 数学-应用数学
CiteScore
0.10
自引率
5.60%
发文量
137
审稿时长
6 months
期刊介绍: The Journal of Global Optimization publishes carefully refereed papers that encompass theoretical, computational, and applied aspects of global optimization. While the focus is on original research contributions dealing with the search for global optima of non-convex, multi-extremal problems, the journal’s scope covers optimization in the widest sense, including nonlinear, mixed integer, combinatorial, stochastic, robust, multi-objective optimization, computational geometry, and equilibrium problems. Relevant works on data-driven methods and optimization-based data mining are of special interest. In addition to papers covering theory and algorithms of global optimization, the journal publishes significant papers on numerical experiments, new testbeds, and applications in engineering, management, and the sciences. Applications of particular interest include healthcare, computational biochemistry, energy systems, telecommunications, and finance. Apart from full-length articles, the journal features short communications on both open and solved global optimization problems. It also offers reviews of relevant books and publishes special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信