The role of absorption terms in Dirichlet problems for the prescribed mean curvature equation

Francescantonio Oliva, Francesco Petitta, Sergio Segura de León
{"title":"The role of absorption terms in Dirichlet problems for the prescribed mean curvature equation","authors":"Francescantonio Oliva, Francesco Petitta, Sergio Segura de León","doi":"10.1007/s00030-024-00936-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study existence and uniqueness of solutions to Dirichlet problems as </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} g(u) \\displaystyle -{\\text {div}}\\left( \\frac{D u}{\\sqrt{1+|D u|^2}}\\right) = f &amp;{} \\text {in}\\;\\Omega ,\\\\ u=0 &amp;{} \\text {on}\\;\\partial \\Omega , \\end{array}\\right. } \\end{aligned}$$</span><p>where <span>\\(\\Omega \\)</span> is an open bounded subset of <span>\\({{\\,\\mathrm{\\mathbb {R}}\\,}}^N\\)</span> (<span>\\(N\\ge 2\\)</span>) with Lipschitz boundary, <span>\\(g:\\mathbb {R}\\rightarrow \\mathbb {R}\\)</span> is a continuous function and <i>f</i> belongs to some Lebesgue space. In particular, under suitable saturation and sign assumptions, we explore the regularizing effect given by the absorption term <i>g</i>(<i>u</i>) in order to get solutions for data <i>f</i> merely belonging to <span>\\(L^1(\\Omega )\\)</span> and with no smallness assumptions on the norm. We also prove a sharp boundedness result for data in <span>\\(L^{N}(\\Omega )\\)</span> as well as uniqueness if <i>g</i> is increasing.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00936-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study existence and uniqueness of solutions to Dirichlet problems as

$$\begin{aligned} {\left\{ \begin{array}{ll} g(u) \displaystyle -{\text {div}}\left( \frac{D u}{\sqrt{1+|D u|^2}}\right) = f &{} \text {in}\;\Omega ,\\ u=0 &{} \text {on}\;\partial \Omega , \end{array}\right. } \end{aligned}$$

where \(\Omega \) is an open bounded subset of \({{\,\mathrm{\mathbb {R}}\,}}^N\) (\(N\ge 2\)) with Lipschitz boundary, \(g:\mathbb {R}\rightarrow \mathbb {R}\) is a continuous function and f belongs to some Lebesgue space. In particular, under suitable saturation and sign assumptions, we explore the regularizing effect given by the absorption term g(u) in order to get solutions for data f merely belonging to \(L^1(\Omega )\) and with no smallness assumptions on the norm. We also prove a sharp boundedness result for data in \(L^{N}(\Omega )\) as well as uniqueness if g is increasing.

吸收项在规定平均曲率方程的迪里夏特问题中的作用
在本文中,我们研究迪里夏特问题解的存在性和唯一性,如 $$\begin{aligned} {\left\{ \begin{array}{ll} g(u) \displaystyle -{\text {div}}\left( \frac{D u}{\sqrt{1+|D u|^2}}\right) = f &{}\text{in}\;\Omega ,\ u=0 &{}\text {on}\;partial \Omega , \end{array}\right.}\end{aligned}$where \(\Omega \) is an open bounded subset of \({{\,\mathrm{\mathbb {R}}\,}}^N\) (\(N\ge 2\)) with Lipschitz boundary, \(g:\mathbb {R}\rightarrow \mathbb {R}\) is a continuous function and f belongs to some Lebesgue space.特别是,在合适的饱和度和符号假设条件下,我们探索了吸收项 g(u) 的正则化效应,以便得到数据 f 仅属于 \(L^1(\Omega )\) 的解,并且没有关于规范的小性假设。对于 \(L^{N}(\Omega )\) 中的数据,我们还证明了一个尖锐的有界性结果,以及如果 g 是递增的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信