Homotopy types of diffeomorphism groups of polar Morse–Bott foliations on lens spaces, 2

Pub Date : 2024-04-18 DOI:10.1007/s40062-024-00346-5
Sergiy Maksymenko
{"title":"Homotopy types of diffeomorphism groups of polar Morse–Bott foliations on lens spaces, 2","authors":"Sergiy Maksymenko","doi":"10.1007/s40062-024-00346-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\({\\mathcal {F}}\\)</span> be a Morse–Bott foliation on the solid torus <span>\\(T=S^1\\times D^2\\)</span> into 2-tori parallel to the boundary and one singular central circle. Gluing two copies of <i>T</i> by some diffeomorphism between their boundaries, one gets a lens space <span>\\(L_{p,q}\\)</span> with a Morse–Bott foliation <span>\\({\\mathcal {F}}_{p,q}\\)</span> obtained from <span>\\({\\mathcal {F}}\\)</span> on each copy of <i>T</i> and thus consisting of two singular circles and parallel 2-tori. In the previous paper Khokliuk and Maksymenko (J Homotopy Relat Struct 18:313–356. https://doi.org/10.1007/s40062-023-00328-z, 2024) there were computed weak homotopy types of the groups <span>\\({\\mathcal {D}}^{lp}({\\mathcal {F}}_{p,q})\\)</span> of leaf preserving (i.e. leaving invariant each leaf) diffeomorphisms of such foliations. In the present paper it is shown that the inclusion of these groups into the corresponding group <span>\\({\\mathcal {D}}^{fol}_{+}({\\mathcal {F}}_{p,q})\\)</span> of foliated (i.e. sending leaves to leaves) diffeomorphisms which do not interchange singular circles are homotopy equivalences.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-024-00346-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let \({\mathcal {F}}\) be a Morse–Bott foliation on the solid torus \(T=S^1\times D^2\) into 2-tori parallel to the boundary and one singular central circle. Gluing two copies of T by some diffeomorphism between their boundaries, one gets a lens space \(L_{p,q}\) with a Morse–Bott foliation \({\mathcal {F}}_{p,q}\) obtained from \({\mathcal {F}}\) on each copy of T and thus consisting of two singular circles and parallel 2-tori. In the previous paper Khokliuk and Maksymenko (J Homotopy Relat Struct 18:313–356. https://doi.org/10.1007/s40062-023-00328-z, 2024) there were computed weak homotopy types of the groups \({\mathcal {D}}^{lp}({\mathcal {F}}_{p,q})\) of leaf preserving (i.e. leaving invariant each leaf) diffeomorphisms of such foliations. In the present paper it is shown that the inclusion of these groups into the corresponding group \({\mathcal {D}}^{fol}_{+}({\mathcal {F}}_{p,q})\) of foliated (i.e. sending leaves to leaves) diffeomorphisms which do not interchange singular circles are homotopy equivalences.

分享
查看原文
透镜空间上极性莫尔斯-波特叶形的差分群的同调类型,2
让 \({\mathcal {F}}\) 是实体环 \(T=S^1\times D^2\) 上的莫尔斯-鲍特(Morse-Bott)折射,分为与边界平行的两个蝶形和一个奇异的中心圆。把两个 T 的副本通过它们边界之间的某种差分变形粘合起来,就会得到一个透镜空间 \(L_{p,q}\),其中每个 T 的副本上都有一个从 \({\mathcal {F}}/{p,q}\)得到的 Morse-Bott foliation \({\mathcal {F}}_{p,q}\),因此由两个奇异的圆和平行的 2-tori 组成。在之前的论文 Khokliuk 和 Maksymenko (J Homotopy Relat Struct 18:313-356. https://doi.org/10.1007/s40062-023-00328-z, 2024) 中,计算了这种叶形的叶保留(即每个叶保持不变)差分同构群 \({\mathcal {D}}^{lp}({\mathcal {F}}_{p,q}) 的弱同构类型。本文证明了这些群包含在不交换奇异圆的叶保留(即把叶送到叶)衍射的相应群 \({\mathcal {D}^{fol}_{+}({\mathcal {F}}_{p,q}) 中是同调等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信