Constitutive internalisation of EP2 differentially regulates G protein signalling

IF 3.6 4区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Abigail R. Walker, Holly Ann Parkin, Sung Hye Kim, Vasso Terzidou, David F Woodward, Phillip R Bennett, Aylin C. Hanyaloglu
{"title":"Constitutive internalisation of EP2 differentially regulates G protein signalling","authors":"Abigail R. Walker, Holly Ann Parkin, Sung Hye Kim, Vasso Terzidou, David F Woodward, Phillip R Bennett, Aylin C. Hanyaloglu","doi":"10.1530/jme-23-0153","DOIUrl":null,"url":null,"abstract":"<p>The prostanoid G protein-coupled receptor (GPCR) EP2 is widely expressed and implicated in endometriosis, osteoporosis, obesity, pre-term labour, and cancer. Internalisation and intracellular trafficking are critical for shaping GPCR activity, yet little is known regarding spatial programming of EP2 signalling and whether this can be exploited pharmacologically. Using three EP2-selective ligands that favour activation of different EP2 pathways, we show that EP2 undergoes limited agonist-driven internalisation but is constitutively internalised via dynamin-dependent, β-arrestin-independent pathways. EP2 was constitutively trafficked to early and very early endosomes (VEE) which was not altered by ligand activation. APPL1, a key adaptor and regulatory protein of the VEE, did not impact EP2 agonist-mediated cAMP. Internalisation was required for ~70% of the acute butaprost- and AH13205-mediated cAMP signalling, yet PGN9856i, a Gαs biased agonist, was less dependent on receptor internalisation for its cAMP signalling, particularly in human term pregnant myometrial cells that endogenously express EP2. Inhibition of EP2 internalisation partially reduced calcium signalling activated by butaprost or AH13205 and had no effect on PGE2 secretion. This indicates an agonist-dependent differential spatial requirement for Gαs and Gαq/11 signalling and a role for plasma membrane initiated Gαq/11-Ca2+-mediated PGE2 secretion. These findings reveal a key role for EP2 constitutive internalisation in its signalling and potential spatial bias in mediating its downstream functions. This in turn could highlight important considerations for future selective targeting of EP2 signalling pathways.</p>","PeriodicalId":16570,"journal":{"name":"Journal of molecular endocrinology","volume":"19 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/jme-23-0153","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

The prostanoid G protein-coupled receptor (GPCR) EP2 is widely expressed and implicated in endometriosis, osteoporosis, obesity, pre-term labour, and cancer. Internalisation and intracellular trafficking are critical for shaping GPCR activity, yet little is known regarding spatial programming of EP2 signalling and whether this can be exploited pharmacologically. Using three EP2-selective ligands that favour activation of different EP2 pathways, we show that EP2 undergoes limited agonist-driven internalisation but is constitutively internalised via dynamin-dependent, β-arrestin-independent pathways. EP2 was constitutively trafficked to early and very early endosomes (VEE) which was not altered by ligand activation. APPL1, a key adaptor and regulatory protein of the VEE, did not impact EP2 agonist-mediated cAMP. Internalisation was required for ~70% of the acute butaprost- and AH13205-mediated cAMP signalling, yet PGN9856i, a Gαs biased agonist, was less dependent on receptor internalisation for its cAMP signalling, particularly in human term pregnant myometrial cells that endogenously express EP2. Inhibition of EP2 internalisation partially reduced calcium signalling activated by butaprost or AH13205 and had no effect on PGE2 secretion. This indicates an agonist-dependent differential spatial requirement for Gαs and Gαq/11 signalling and a role for plasma membrane initiated Gαq/11-Ca2+-mediated PGE2 secretion. These findings reveal a key role for EP2 constitutive internalisation in its signalling and potential spatial bias in mediating its downstream functions. This in turn could highlight important considerations for future selective targeting of EP2 signalling pathways.

EP2 先天性内化可对 G 蛋白信号进行不同程度的调节
前列腺素类 G 蛋白偶联受体(GPCR)EP2 广泛表达,并与子宫内膜异位症、骨质疏松症、肥胖症、早产和癌症有关。内化和细胞内转运是形成 GPCR 活性的关键,但人们对 EP2 信号的空间编程以及是否可以药理学地利用这一点知之甚少。我们使用了三种有利于激活不同 EP2 通路的 EP2 选择性配体,结果表明,EP2 经历了有限的激动剂驱动的内化,但通过依赖于 dynamin 的、不依赖于 β-restin 的通路进行组成性内化。EP2 构成性地向早期和极早期内体(VEE)贩运,配体激活不会改变这种贩运。APPL1是VEE的一个关键适配器和调节蛋白,它不会影响EP2激动剂介导的cAMP。急性丁前列素和 AH13205 介导的 cAMP 信号的约 70% 需要内化,但 PGN9856i(一种偏向 Gαs 的激动剂)的 cAMP 信号对受体内化的依赖性较低,特别是在内源性表达 EP2 的人类足月妊娠子宫肌细胞中。抑制 EP2 内化可部分减少由丁前列素或 AH13205 激活的钙信号,但对 PGE2 的分泌没有影响。这表明,Gαs 和 Gαq/11 信号在空间上有不同的依赖性,质膜启动的 Gαq/11-Ca2+ 介导的 PGE2 分泌发挥作用。这些发现揭示了 EP2 构成性内化在其信号传导中的关键作用,以及介导其下游功能的潜在空间偏差。这反过来又可以突出未来选择性靶向 EP2 信号通路的重要考虑因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of molecular endocrinology
Journal of molecular endocrinology 医学-内分泌学与代谢
CiteScore
6.90
自引率
0.00%
发文量
96
审稿时长
1 months
期刊介绍: The Journal of Molecular Endocrinology is an official journal of the Society for Endocrinology and is endorsed by the European Society of Endocrinology and the Endocrine Society of Australia. Journal of Molecular Endocrinology is a leading global journal that publishes original research articles and reviews. The journal focuses on molecular and cellular mechanisms in endocrinology, including: gene regulation, cell biology, signalling, mutations, transgenics, hormone-dependant cancers, nuclear receptors, and omics. Basic and pathophysiological studies at the molecule and cell level are considered, as well as human sample studies where this is the experimental model of choice. Technique studies including CRISPR or gene editing are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信