A Paley–Wiener Theorem for the Mehler–Fock Transform

IF 0.6 4区 数学 Q3 MATHEMATICS
Alfonso Montes-Rodríguez, Jani Virtanen
{"title":"A Paley–Wiener Theorem for the Mehler–Fock Transform","authors":"Alfonso Montes-Rodríguez, Jani Virtanen","doi":"10.1007/s40315-024-00537-4","DOIUrl":null,"url":null,"abstract":"<p>In this note, we prove a Paley–Wiener Theorem for the Mehler–Fock transform. In particular, we show that it induces an isometric isomorphism from the Hardy space <span>\\(\\mathcal H^2(\\mathbb C^+)\\)</span> onto <span>\\(L^2(\\mathbb R^+,( 2 \\pi )^{-1} t \\sinh (\\pi t) \\, dt ) \\)</span>. The proof we provide here is very simple and is based on an old idea that seems to be due to G. R. Hardy. As a consequence of this Paley–Wiener theorem we also prove a Parseval’s theorem. In the course of the proof, we find a formula for the Mehler–Fock transform of some particular functions.</p>","PeriodicalId":49088,"journal":{"name":"Computational Methods and Function Theory","volume":"93 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods and Function Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00537-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this note, we prove a Paley–Wiener Theorem for the Mehler–Fock transform. In particular, we show that it induces an isometric isomorphism from the Hardy space \(\mathcal H^2(\mathbb C^+)\) onto \(L^2(\mathbb R^+,( 2 \pi )^{-1} t \sinh (\pi t) \, dt ) \). The proof we provide here is very simple and is based on an old idea that seems to be due to G. R. Hardy. As a consequence of this Paley–Wiener theorem we also prove a Parseval’s theorem. In the course of the proof, we find a formula for the Mehler–Fock transform of some particular functions.

梅勒-福克变换的帕利-维纳定理
在本论文中,我们证明了梅勒-福克变换的帕利-维纳定理。特别是,我们证明了它从哈代空间 \(\mathcal H^2(\mathbb C^+)\) 到 \(L^2(\mathbb R^+,( 2 \pi )^{-1} t \sinh (\pi t) \, dt ) 的等距同构。\).我们在此提供的证明非常简单,它基于一个似乎是 G. R. Hardy 提出的古老思想。作为帕利-维纳定理的结果,我们还证明了帕瑟瓦尔定理。在证明过程中,我们找到了一些特殊函数的梅勒-福克变换公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Methods and Function Theory
Computational Methods and Function Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.20
自引率
0.00%
发文量
44
审稿时长
>12 weeks
期刊介绍: CMFT is an international mathematics journal which publishes carefully selected original research papers in complex analysis (in a broad sense), and on applications or computational methods related to complex analysis. Survey articles of high standard and current interest can be considered for publication as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信