Stochastic Differential Equations with Local Growth Singular Drifts

Pub Date : 2024-04-19 DOI:10.1007/s10959-024-01333-5
Wenjie Ye
{"title":"Stochastic Differential Equations with Local Growth Singular Drifts","authors":"Wenjie Ye","doi":"10.1007/s10959-024-01333-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the weak differentiability of global strong solution of stochastic differential equations, the strong Feller property of the associated diffusion semigroups and the global stochastic flow property in which the singular drift <i>b</i> and the weak gradient of Sobolev diffusion <span>\\(\\sigma \\)</span> are supposed to satisfy <span>\\(\\left\\| \\left| b\\right| \\cdot \\mathbbm {1}_{B(R)}\\right\\| _{p_1}\\le O((\\log R)^{{(p_1-d)^2}/{2p^2_1}})\\)</span> and <span>\\(\\left\\| \\left\\| \\nabla \\sigma \\right\\| \\cdot \\mathbbm {1}_{B(R)}\\right\\| _{p_1}\\le O((\\log ({R}/{3}))^{{(p_1-d)^2}/{2p^2_1}})\\)</span>, respectively. The main tools for these results are the decomposition of global two-point motions in Fang et al. (Ann Probab 35(1):180–205, 2007), Krylov’s estimate, Khasminskii’s estimate, Zvonkin’s transformation and the characterization for Sobolev differentiability of random fields in Xie and Zhang (Ann Probab 44(6):3661–3687, 2016).\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01333-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the weak differentiability of global strong solution of stochastic differential equations, the strong Feller property of the associated diffusion semigroups and the global stochastic flow property in which the singular drift b and the weak gradient of Sobolev diffusion \(\sigma \) are supposed to satisfy \(\left\| \left| b\right| \cdot \mathbbm {1}_{B(R)}\right\| _{p_1}\le O((\log R)^{{(p_1-d)^2}/{2p^2_1}})\) and \(\left\| \left\| \nabla \sigma \right\| \cdot \mathbbm {1}_{B(R)}\right\| _{p_1}\le O((\log ({R}/{3}))^{{(p_1-d)^2}/{2p^2_1}})\), respectively. The main tools for these results are the decomposition of global two-point motions in Fang et al. (Ann Probab 35(1):180–205, 2007), Krylov’s estimate, Khasminskii’s estimate, Zvonkin’s transformation and the characterization for Sobolev differentiability of random fields in Xie and Zhang (Ann Probab 44(6):3661–3687, 2016).

分享
查看原文
具有局部增长奇异漂移的随机微分方程
本文研究了随机微分方程全局强解的弱可微分性、其中奇异漂移 b 和 Sobolev 扩散的弱梯度 \(\sigma \) 理应满足 \(\left\| \left| b\right| \cdot \mathbbm {1}_{B(R)}\right\| _{p_1}\le O((\log R)^{{(p_1-d)^2}/{2p^2_1}}) 和 \(\left\| \left\| \nabla \sigma\right\| \cdot \mathbbm {1}_{B(R)}\right\| _{p_1}}\le O((\log ({R}/{3}))^{{(p_1-d)^2}/{2p^2_1}})\)、分别为这些结果的主要工具是 Fang 等人 (Ann Probab 35(1):180-205, 2007) 中的全局两点运动分解、Krylov 估计、Khasminskii 估计、Zvonkin 变换以及 Xie 和 Zhang (Ann Probab 44(6):3661-3687, 2016) 中的随机场 Sobolev 可微分性表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信