Adjoint Sensitivities of Chaotic Flows without Adjoint Solvers: A Data-Driven Approach

Defne E. Ozan, Luca Magri
{"title":"Adjoint Sensitivities of Chaotic Flows without Adjoint Solvers: A Data-Driven Approach","authors":"Defne E. Ozan, Luca Magri","doi":"arxiv-2404.12315","DOIUrl":null,"url":null,"abstract":"In one calculation, adjoint sensitivity analysis provides the gradient of a\nquantity of interest with respect to all system's parameters. Conventionally,\nadjoint solvers need to be implemented by differentiating computational models,\nwhich can be a cumbersome task and is code-specific. To propose an adjoint\nsolver that is not code-specific, we develop a data-driven strategy. We\ndemonstrate its application on the computation of gradients of long-time\naverages of chaotic flows. First, we deploy a parameter-aware echo state\nnetwork (ESN) to accurately forecast and simulate the dynamics of a dynamical\nsystem for a range of system's parameters. Second, we derive the adjoint of the\nparameter-aware ESN. Finally, we combine the parameter-aware ESN with its\nadjoint version to compute the sensitivities to the system parameters. We\nshowcase the method on a prototypical chaotic system. Because adjoint\nsensitivities in chaotic regimes diverge for long integration times, we analyse\nthe application of ensemble adjoint method to the ESN. We find that the adjoint\nsensitivities obtained from the ESN match closely with the original system.\nThis work opens possibilities for sensitivity analysis without code-specific\nadjoint solvers.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.12315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In one calculation, adjoint sensitivity analysis provides the gradient of a quantity of interest with respect to all system's parameters. Conventionally, adjoint solvers need to be implemented by differentiating computational models, which can be a cumbersome task and is code-specific. To propose an adjoint solver that is not code-specific, we develop a data-driven strategy. We demonstrate its application on the computation of gradients of long-time averages of chaotic flows. First, we deploy a parameter-aware echo state network (ESN) to accurately forecast and simulate the dynamics of a dynamical system for a range of system's parameters. Second, we derive the adjoint of the parameter-aware ESN. Finally, we combine the parameter-aware ESN with its adjoint version to compute the sensitivities to the system parameters. We showcase the method on a prototypical chaotic system. Because adjoint sensitivities in chaotic regimes diverge for long integration times, we analyse the application of ensemble adjoint method to the ESN. We find that the adjoint sensitivities obtained from the ESN match closely with the original system. This work opens possibilities for sensitivity analysis without code-specific adjoint solvers.
不使用交点求解器的混沌流交点敏感性:数据驱动法
在一次计算中,邻接灵敏度分析提供了相关含水量相对于所有系统参数的梯度。传统的邻接求解器需要通过区分计算模型来实现,这可能是一项繁琐的任务,而且需要特定的代码。为了提出一种不针对特定代码的邻接求解器,我们开发了一种数据驱动策略。我们演示了该策略在计算混沌流长时间平均值梯度上的应用。首先,我们部署了参数感知回声状态网络(ESN),以准确预测和模拟动态系统在一定范围内的参数动态。其次,我们推导出参数感知 ESN 的邻接。最后,我们将参数感知 ESN 与其邻接版本相结合,计算系统参数的敏感性。我们在一个原型混沌系统上演示了该方法。由于混沌状态下的邻接敏感性在较长的积分时间内会发散,我们分析了集合邻接法在 ESN 中的应用。我们发现从 ESN 中得到的邻接敏感度与原始系统非常吻合。这项工作为在没有特定代码邻接求解器的情况下进行敏感度分析提供了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信