Codazzi Tensor Fields in Reductive Homogeneous Spaces

IF 1.1 3区 数学 Q1 MATHEMATICS
James Marshall Reber, Ivo Terek
{"title":"Codazzi Tensor Fields in Reductive Homogeneous Spaces","authors":"James Marshall Reber, Ivo Terek","doi":"10.1007/s00025-024-02151-1","DOIUrl":null,"url":null,"abstract":"<p>We extend the results about left-invariant Codazzi tensor fields on Lie groups equipped with left-invariant Riemannian metrics obtained by d’Atri in 1985 to the setting of reductive homogeneous spaces <i>G</i>/<i>H</i>, where the curvature of the canonical connection of second kind associated with the fixed reductive decomposition <span>\\(\\mathfrak {g} = \\mathfrak {h}\\oplus \\mathfrak {m}\\)</span> enters the picture. In particular, we show that invariant Codazzi tensor fields on a naturally reductive homogeneous space are parallel.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":"8 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02151-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We extend the results about left-invariant Codazzi tensor fields on Lie groups equipped with left-invariant Riemannian metrics obtained by d’Atri in 1985 to the setting of reductive homogeneous spaces G/H, where the curvature of the canonical connection of second kind associated with the fixed reductive decomposition \(\mathfrak {g} = \mathfrak {h}\oplus \mathfrak {m}\) enters the picture. In particular, we show that invariant Codazzi tensor fields on a naturally reductive homogeneous space are parallel.

还原均质空间中的科达齐张量场
我们将达特里(d'Atri)1985 年获得的关于配备左不变黎曼度量的李群上的左不变科达齐张量场的结果扩展到还原均质空间 G/H 的环境中,在这里,与固定还原分解相关联的第二类典型连接的曲率(\mathfrak {g} = \mathfrak {h}\oplus \mathfrak {m}/)进入了画面。特别是,我们证明了自然还原同质空间上不变的科达齐张量场是平行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信