{"title":"Microbiological features of drowning-associated pneumonia: a systematic review and meta-analysis","authors":"Vladimir L. Cousin, Laure F. Pittet","doi":"10.1186/s13613-024-01287-1","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>Drowning-associated pneumonia (DAP) is frequent in drowned patients, and possibly increases mortality. A better understanding of the microorganisms causing DAP could improve the adequacy of empirical antimicrobial therapy. We aimed to describe the pooled prevalence of DAP, the microorganisms involved, and the impact of DAP on drowned patients.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Systematic review and meta-analysis of studies published between 01/2000 and 07/2023 reporting on DAP occurrence and microorganisms involved.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Of 309 unique articles screened, 6 were included, involving 688 patients. All were retrospective cohort studies, with a number of patients ranging from 37 to 270. Studies were conducted in Europe (France N = 3 and Netherland N = 1), United States of America (N = 1) and French West Indies (N = 1). Mortality ranged between 18 to 81%. The pooled prevalence of DAP was 39% (95%CI 29–48), similarly following freshwater (pooled prevalence 44%, 95%CI 36–52) or seawater drowning (pooled prevalence 42%, 95%CI 32–53). DAP did not significantly impact mortality (pooled odds ratio 1.43, 95%CI 0.56–3.67) but this estimation was based on two studies only. Respiratory samplings isolated 171 microorganisms, mostly Gram negative (98/171, 57%) and mainly <i>Aeromonas </i>sp. (20/171, 12%). Gram positive microorganisms represented 38/171 (22%) isolates, mainly <i>Staphylococcus aureus</i> (21/171, 12%)<i>.</i> Water salinity levels had a limited impact on the distribution of microorganisms, except for <i>Aeromonas</i> sp. who were exclusively found following freshwater drowning (19/106, 18%) and never following seawater drowning (0%) (p = 0.001). No studies reported multidrug-resistant organisms but nearly 30% of the isolated microorganisms were resistant to amoxicillin-clavulanate, the drug that was the most commonly prescribed empirically for DAP.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>DAP are commonly caused by Gram-negative bacteria, especially <i>Aeromonas</i> sp. which is exclusively isolated following freshwater drowning. Empirical antimicrobial therapy should consider covering them, noting than amoxicillin-clavulanate may be inadequate in about one-third of the cases. The impact of DAP on patients’ outcome is still unclear.</p>","PeriodicalId":7966,"journal":{"name":"Annals of Intensive Care","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Intensive Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13613-024-01287-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Drowning-associated pneumonia (DAP) is frequent in drowned patients, and possibly increases mortality. A better understanding of the microorganisms causing DAP could improve the adequacy of empirical antimicrobial therapy. We aimed to describe the pooled prevalence of DAP, the microorganisms involved, and the impact of DAP on drowned patients.
Methods
Systematic review and meta-analysis of studies published between 01/2000 and 07/2023 reporting on DAP occurrence and microorganisms involved.
Results
Of 309 unique articles screened, 6 were included, involving 688 patients. All were retrospective cohort studies, with a number of patients ranging from 37 to 270. Studies were conducted in Europe (France N = 3 and Netherland N = 1), United States of America (N = 1) and French West Indies (N = 1). Mortality ranged between 18 to 81%. The pooled prevalence of DAP was 39% (95%CI 29–48), similarly following freshwater (pooled prevalence 44%, 95%CI 36–52) or seawater drowning (pooled prevalence 42%, 95%CI 32–53). DAP did not significantly impact mortality (pooled odds ratio 1.43, 95%CI 0.56–3.67) but this estimation was based on two studies only. Respiratory samplings isolated 171 microorganisms, mostly Gram negative (98/171, 57%) and mainly Aeromonas sp. (20/171, 12%). Gram positive microorganisms represented 38/171 (22%) isolates, mainly Staphylococcus aureus (21/171, 12%). Water salinity levels had a limited impact on the distribution of microorganisms, except for Aeromonas sp. who were exclusively found following freshwater drowning (19/106, 18%) and never following seawater drowning (0%) (p = 0.001). No studies reported multidrug-resistant organisms but nearly 30% of the isolated microorganisms were resistant to amoxicillin-clavulanate, the drug that was the most commonly prescribed empirically for DAP.
Conclusions
DAP are commonly caused by Gram-negative bacteria, especially Aeromonas sp. which is exclusively isolated following freshwater drowning. Empirical antimicrobial therapy should consider covering them, noting than amoxicillin-clavulanate may be inadequate in about one-third of the cases. The impact of DAP on patients’ outcome is still unclear.
期刊介绍:
Annals of Intensive Care is an online peer-reviewed journal that publishes high-quality review articles and original research papers in the field of intensive care medicine. It targets critical care providers including attending physicians, fellows, residents, nurses, and physiotherapists, who aim to enhance their knowledge and provide optimal care for their patients. The journal's articles are included in various prestigious databases such as CAS, Current contents, DOAJ, Embase, Journal Citation Reports/Science Edition, OCLC, PubMed, PubMed Central, Science Citation Index Expanded, SCOPUS, and Summon by Serial Solutions.