Character is Destiny: Can Large Language Models Simulate Persona-Driven Decisions in Role-Playing?

Rui Xu, Xintao Wang, Jiangjie Chen, Siyu Yuan, Xinfeng Yuan, Jiaqing Liang, Zulong Chen, Xiaoqing Dong, Yanghua Xiao
{"title":"Character is Destiny: Can Large Language Models Simulate Persona-Driven Decisions in Role-Playing?","authors":"Rui Xu, Xintao Wang, Jiangjie Chen, Siyu Yuan, Xinfeng Yuan, Jiaqing Liang, Zulong Chen, Xiaoqing Dong, Yanghua Xiao","doi":"arxiv-2404.12138","DOIUrl":null,"url":null,"abstract":"Can Large Language Models substitute humans in making important decisions?\nRecent research has unveiled the potential of LLMs to role-play assigned\npersonas, mimicking their knowledge and linguistic habits. However, imitative\ndecision-making requires a more nuanced understanding of personas. In this\npaper, we benchmark the ability of LLMs in persona-driven decision-making.\nSpecifically, we investigate whether LLMs can predict characters' decisions\nprovided with the preceding stories in high-quality novels. Leveraging\ncharacter analyses written by literary experts, we construct a dataset\nLIFECHOICE comprising 1,401 character decision points from 395 books. Then, we\nconduct comprehensive experiments on LIFECHOICE, with various LLMs and methods\nfor LLM role-playing. The results demonstrate that state-of-the-art LLMs\nexhibit promising capabilities in this task, yet there is substantial room for\nimprovement. Hence, we further propose the CHARMAP method, which achieves a\n6.01% increase in accuracy via persona-based memory retrieval. We will make our\ndatasets and code publicly available.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.12138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Can Large Language Models substitute humans in making important decisions? Recent research has unveiled the potential of LLMs to role-play assigned personas, mimicking their knowledge and linguistic habits. However, imitative decision-making requires a more nuanced understanding of personas. In this paper, we benchmark the ability of LLMs in persona-driven decision-making. Specifically, we investigate whether LLMs can predict characters' decisions provided with the preceding stories in high-quality novels. Leveraging character analyses written by literary experts, we construct a dataset LIFECHOICE comprising 1,401 character decision points from 395 books. Then, we conduct comprehensive experiments on LIFECHOICE, with various LLMs and methods for LLM role-playing. The results demonstrate that state-of-the-art LLMs exhibit promising capabilities in this task, yet there is substantial room for improvement. Hence, we further propose the CHARMAP method, which achieves a 6.01% increase in accuracy via persona-based memory retrieval. We will make our datasets and code publicly available.
角色即命运:大型语言模型能否模拟角色扮演游戏中由角色驱动的决策?
最近的研究揭示了大语言模型的潜力,它可以扮演指定的角色,模仿他们的知识和语言习惯。然而,模仿决策需要对角色有更细致入微的了解。在本文中,我们将对LLMs在角色驱动决策方面的能力进行基准测试。具体来说,我们研究了LLMs是否能够预测高质量小说中的人物在前面故事的基础上所做出的决策。利用文学专家撰写的人物分析报告,我们构建了一个数据集LIFECHOICE,其中包含来自395本书的1,401个人物决策点。然后,我们在 LIFECHOICE 上使用各种 LLM 和 LLM 角色扮演方法进行了综合实验。结果表明,最先进的 LLM 在这项任务中表现出了良好的能力,但仍有很大的改进空间。因此,我们进一步提出了 CHARMAP 方法,该方法通过基于角色的记忆检索提高了 6.01% 的准确率。我们将公开我们的数据集和代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信