Numerical simulation of the ferrohydrodynamics flow using an unconditionally stable second‐order scheme

Aytura Keram, Pengzhan Huang
{"title":"Numerical simulation of the ferrohydrodynamics flow using an unconditionally stable second‐order scheme","authors":"Aytura Keram, Pengzhan Huang","doi":"10.1002/zamm.202400025","DOIUrl":null,"url":null,"abstract":"In this paper, we design a decoupled, linear, unconditionally stable and fully discrete numerical scheme for a ferrohydrodynamics system with second‐order temporal accuracy. This scheme is based on a second‐order backward difference formula for time derivative terms and linearization extrapolation for nonlinear terms, which produces a series of decoupled linear equations and solves effectively this nonlinear and multiphysical coupled system. Meanwhile, we show that the scheme is unconditionally stable. Finally, some numerical experiments are provided to verify the theoretical finding and illustrate the accuracy and efficiency of the proposed scheme.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202400025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we design a decoupled, linear, unconditionally stable and fully discrete numerical scheme for a ferrohydrodynamics system with second‐order temporal accuracy. This scheme is based on a second‐order backward difference formula for time derivative terms and linearization extrapolation for nonlinear terms, which produces a series of decoupled linear equations and solves effectively this nonlinear and multiphysical coupled system. Meanwhile, we show that the scheme is unconditionally stable. Finally, some numerical experiments are provided to verify the theoretical finding and illustrate the accuracy and efficiency of the proposed scheme.
使用无条件稳定的二阶方案对铁流体力学流动进行数值模拟
在本文中,我们为铁流体力学系统设计了一种解耦的、线性的、无条件稳定的、完全离散的数值方案,具有二阶时间精度。该方案基于时间导数项的二阶后向差分公式和非线性项的线性化外推法,产生了一系列解耦线性方程,有效地求解了这个非线性和多物理耦合系统。同时,我们还证明了该方案是无条件稳定的。最后,我们提供了一些数值实验来验证理论结论,并说明了所提方案的准确性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信